Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Propulsion drive models for full electric marine propulsion systems

Apsley, J.M. and Gonzalez-Villasenor, A. and Barnes, M. and Smith, A.C.J. and Williamson, S. and Schuddebeurs, J.D. and Norman, P.J. and Booth, C.D. (2007) Propulsion drive models for full electric marine propulsion systems. In: IEEE International Electric Machines & Drives Conference (IEMDC), 2007-05-03 - 2007-05-05.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Integrated full electric propulsion systems are being introduced across both civil and military marine sectors. Standard power systems analysis packages cover electrical and electromagnetic components, but have limited models of mechanical subsystems and their controllers. Hence electromechanical system interactions between the prime movers, power network and driven loads are poorly understood. This paper reviews available models of the propulsion drive system components: the power converter, motor, propeller and ship. Due to the wide range of time-constants in the system, reduced order models of the power converter are required. A new model using state-averaged models of the inverter and a hybrid model of the rectifier is developed to give an effective solution combining accuracy with speed of simulation and an appropriate interface to the electrical network model. Simulation results for a typical ship manoeuvre are presented.