Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Propulsion drive models for full electric marine propulsion systems

Apsley, J.M. and Gonzalez-Villasenor, A. and Barnes, M. and Smith, A.C.J. and Williamson, S. and Schuddebeurs, J.D. and Norman, P.J. and Booth, C.D. (2007) Propulsion drive models for full electric marine propulsion systems. In: IEEE International Electric Machines & Drives Conference (IEMDC), 2007-05-03 - 2007-05-05.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Integrated full electric propulsion systems are being introduced across both civil and military marine sectors. Standard power systems analysis packages cover electrical and electromagnetic components, but have limited models of mechanical subsystems and their controllers. Hence electromechanical system interactions between the prime movers, power network and driven loads are poorly understood. This paper reviews available models of the propulsion drive system components: the power converter, motor, propeller and ship. Due to the wide range of time-constants in the system, reduced order models of the power converter are required. A new model using state-averaged models of the inverter and a hybrid model of the rectifier is developed to give an effective solution combining accuracy with speed of simulation and an appropriate interface to the electrical network model. Simulation results for a typical ship manoeuvre are presented.