Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate

McConnell, G. and Ferguson, A.I. (2005) Simultaneous stimulated Raman scattering and second harmonic generation in periodically poled lithium niobate. Optics Express, 13 (6). pp. 2099-2104. ISSN 1094-4087

[img] HTML (image001.gif)
strathprints000018.htm

Download (63kB)
[img] PDF (strathprints000018.pdf)
strathprints000018.pdf

Download (297kB)

Abstract

Simultaneous stimulated Raman scattering (SRS) and second harmonic generation (SHG) are demonstrated in periodically poled lithium niobate (PPLN). Using a simple single-pass geometry, conversion efficiencies of up to 12% and 19% were observed for the SRS and SHG processes respectively. By changing the PPLN period interacting with the photonic crystal fibre based pump source and varying the PPLN temperature, the SHG signal was measured to be tunable from λ =584 nm to λ =679 nm. The SRS output spectrum was measured at λ=1583 nm, with a spectral full-width at half-maximum of λ =85 nm.