Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

Timing processes in motor imagery

Grealy, M.A. and Shearer, G.F. (2008) Timing processes in motor imagery. European Journal of Cognitive Psychology, 20 (5). pp. 867-892. ISSN 1464-0635

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Previous research shows inconsistencies in the timing of imagined and actual actions. Little is known about the timing in imagery, or how it relates to other forms of timing. Two studies examined whether imagery timing followed Weber's law, where variations in judgements grow linearly as the interval duration increases, or Vierordt's law, where short durations are overestimated and longer durations underestimated. In Study 1 participants (n=22) mentally walked and estimated journey times for flat paths and stairways, with and without a load. The timing patterns that emerged did not conform to Weber's law. In Study 2 participants (n=20) completed imagery, reproduction, production, and estimation timing tasks. Timing errors for imagery along a straight path, reproduction, estimation, and production all showed 'Vierordt-like' effects. However, when imagining walking in a square participants consistently overestimated. It was concluded that imagery and interval timing processes are similar, but imagery timing is task dependent.