Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

Relationships between radiological and biochemical-evidence of rickets in asian schoolchildren

Abdul-Motaal, A.A. and Gettinby, G. and McIntosh, W B and Sutherland, G R and Dunnigan, M G (1985) Relationships between radiological and biochemical-evidence of rickets in asian schoolchildren. Postgraduate Medical Journal, 61 (714). pp. 307-312. ISSN 0032-5473

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

One hundred Asian schoolchildren provided evidence of the relationships between radiological and biochemical evidence of rickets in a vitamin D-deficient population. In a retrospective study of the X-rays of 56 children the variables serum alkaline phosphatase, inorganic phosphorus and age provided a discriminant function which correctly classified 10 of 11 children with radiological evidence of rickets and 44 of 45 children with negative or marginally abnormal X-rays. When the discriminant function was applied to a prospective study of 44 children, three children with radiological evidence of rickets were correctly classified together with 38 of the remaining 41 children with negative or marginally abnormal X-rays. Serum alkaline phosphatase was the most important variable in the discriminant analysis, followed by serum inorganic phosphorus and age. Low levels of serum 25-hydroxy vitamin D (25-OHD) are of little value in predicting the severity of radiological evidence of rachitic bone disease in a vitamin D-deficient population.