Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Transient currents and torques in wound-rotor induction-motors using the finite-element method

Smith, A.C.J. and Williamson, S. and Smith, J.R. (1990) Transient currents and torques in wound-rotor induction-motors using the finite-element method. IEE Proceedings Electric Power Applications, 137 (3). pp. 160-173. ISSN 1350-2352

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The authors describe a time-stepping finite-element technique for modelling transient torques and currents in a slip-ring induction motor. The method is based on a coupled fields and circuit equation approach that allows the winding inductances to be modified to account for certain three-dimensional effects. The numerical solution incorporates a moving rotor so that slotting and saturation effects can be modelled accurately. The method is verified by direct comparison with experimental results obtained from a motor subjected to a supply reconnection at speed. It is shown that the general method can be extended in a straightforward manner to accommodate cage induction motors.