Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Polynomial approximation errors for functions of low-order continuity

Elliott, D. and Taylor, P.J. (1991) Polynomial approximation errors for functions of low-order continuity. Constructive Approximation, 7 (1). pp. 381-387. ISSN 0176-4276

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Given a function f defined on [-1, 1] we obtain, in terms of (n+1)st divided differences, expressions for the minimax error E n(f) and the error S n(f) obtained by truncating the Chebyshev series off after n+1 terms. The advantage of using divided differences is that f is required to have no more than a continuous second derivative on [-1, 1].