Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium

Braga, M.F.M. and Anderson, A.J. and Harvey, A.L. and Rowan, E.G. (1992) Apparent block of K+ currents in mouse motor nerve terminals by tetrodotoxin, mu-conotoxin and reduced external sodium. British Journal of Pharmacology, 106 (1). pp. 91-94. ISSN 1476-5381

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In mouse triangularis sterni nerve-muscle preparations, reduced extracellular Na+ concentrations and low concentrations of the Na+ channel blocking toxins tetrodotoxin (TTX, 18-36 nM) and mu-conotoxin GIIIB (0.4-2.0 microM) selectively decreased the amplitude of the component of perineural waveforms associated with nerve terminal K+ currents, without affecting the main Na+ spike. 2. Intracellular recording of endplate potentials (e.p.ps) and miniature endplate potentials (m.e.p.ps) from triangularis sterni preparations revealed that TTX and mu-conotoxin GIIIB depressed the evoked quantal release of acetylcholine without significant effects on m.e.p.p. amplitude, frequency or time constant of decay. 3. The apparent block of K+ current by low concentrations of TTX and mu-conotoxin is probably not a direct effect on K+ channels but results from a decrease in the passive depolarization of nerve terminals following blockade of a small proportion of axonal Na+ channels.