Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Differential gravitational coupling between cylindrically-symmetric, concentric test masses and an arbitrary gravitational source: relevance to the STEP experiment

Lockerbie, N.A. and Veryaskin, A.V. and Xu, X. (1993) Differential gravitational coupling between cylindrically-symmetric, concentric test masses and an arbitrary gravitational source: relevance to the STEP experiment. Classical and Quantum Gravity, 10 (11). pp. 2419-2430. ISSN 0264-9381

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The gravitational interaction between a point mass and a finite, hollow, thick-walled cylinder is calculated, the axial force is derived, and the parametric form of the coupling coefficients k2p is presented. This theory is applied to the test-masses for the Satellite Test of the Equivalence Principle (STEP) experiment, and an equation is derived for the differential gravitational coupling to these masses which is more than 105 times faster to compute than a Monte-Carlo integration of similar accuracy.