Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Optimization of the geometry for dipole-dipole and dipole-monopole experiments, using the gravitational interaction between a point-source and a finite cylinder

Lockerbie, N.A. and Xu, X. and Veryaskin, A.V. (1995) Optimization of the geometry for dipole-dipole and dipole-monopole experiments, using the gravitational interaction between a point-source and a finite cylinder. Nuovo Cimento B, 110 (10). pp. 1183-1195. ISSN 0369-3554

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The torsion balance has been used frequently in the search for weak gravitational-like forces. A major problem in the design of these experiments is the optimization of the geometry of the cylindrical masses that have been used. Starting from the formula for simple Newtonian gravitational interaction, the general formulae for treating both ''dipole-dipole'' and ''dipole-monopole'' interactions for cylindrically shaped bodies are derived. These formulae are used to optimize the shape of both the attracting and balance masses. The interaction forces are derived using only 3D integration-rather than the usual 6D integration carried out over the volumes of both interacting bodies. This has resulted in considerably reduced computational time, and thereby the attainment of high accuracy in the optimization.