Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Spherical harmonic representation of the gravitational coupling between a truncated sector of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment

Lockerbie, N.A. and Xu, X. and Veryaskin, A.V. (1995) Spherical harmonic representation of the gravitational coupling between a truncated sector of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment. General Relativity and Gravitation, 27 (11). pp. 1215-1229. ISSN 0001-7701

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The gravitational interaction between grooves machined in a hollow cylindrical mass of uniform density, and an external point mass, is derived in terms of the Associated Legendre functions, and the parametric form of the coupling coefficients is presented. The cross-sections of the grooves, which are regularly spaced in azimuth, are in the form of truncated sectors of the cylinder's end-faces. This theory is applied to the test-masses for the Satellite Test of the Equivalence Principle (STEP) experiment, for which four grooves have been assumed, and an expression for the axialforce is derived which is more than 104 times faster to compute than a Monte-Carlo integration of similar accuracy. Following this analysis it is suggested that the STEP test-masses should carry at least 6 grooves. This theory has wider application to gravitational problems involving general sectored cylindrical bodies.