Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Spherical harmonic representation of the gravitational coupling between a truncated sector of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment

Lockerbie, N.A. and Xu, X. and Veryaskin, A.V. (1995) Spherical harmonic representation of the gravitational coupling between a truncated sector of a hollow cylinder and an arbitrary gravitational source: Relevance to the STEP experiment. General Relativity and Gravitation, 27 (11). pp. 1215-1229. ISSN 0001-7701

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The gravitational interaction between grooves machined in a hollow cylindrical mass of uniform density, and an external point mass, is derived in terms of the Associated Legendre functions, and the parametric form of the coupling coefficients is presented. The cross-sections of the grooves, which are regularly spaced in azimuth, are in the form of truncated sectors of the cylinder's end-faces. This theory is applied to the test-masses for the Satellite Test of the Equivalence Principle (STEP) experiment, for which four grooves have been assumed, and an expression for the axialforce is derived which is more than 104 times faster to compute than a Monte-Carlo integration of similar accuracy. Following this analysis it is suggested that the STEP test-masses should carry at least 6 grooves. This theory has wider application to gravitational problems involving general sectored cylindrical bodies.