Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Characterization of a P-2x-purinoceptor in cultured neurones of the rat dorsal root ganglia

Robertson, S.J. and Rae, M.G. and Rowan, E.G. and Kennedy, C. (1996) Characterization of a P-2x-purinoceptor in cultured neurones of the rat dorsal root ganglia. British Journal of Pharmacology, 118 (4). pp. 951-956. ISSN 0007-1188

Full text not available in this repository. (Request a copy from the Strathclyde author)


1. The electrophysiological actions of the P2-purinoceptor agonists, adenosine 5'-triphosphate (ATP), 2-methylthio ATP (2-meSATP) and alpha, beta-methyleneATP (alpha, beta-meATP) and of uridine 5'-triphosphate (UTP) were studied under concentration and voltage-clamp conditions in dissociated neurones of 1-6 day old rat dorsal root ganglia. 2. ATP (10 nM-100 microM) applied rapidly via a U-tube perfusion system (equilibration time < 10 ms) activated concentration-dependent inward currents with a latency to onset of a few ms, an EC50 of 719 nM and a Hill slope of 1.47. 3. 2-meSATP (10 nM- 100 microM) and alpha, beta-meATP (100 nM - 100 microM) also evoked transient inward currents. The EC50 and Hill slopes were 450 nM and 1.58 for 2-meSATP and 1.95 microM and 1.53 for alpha, beta-meATP respectively. There was no significant difference between the maximum currents evoked by the three agonists. 4. As the concentration of ATP increased so the rate of rise and decay of the currents also increased. At 100 and 300 nM ATP the decay of the current was best fitted by a single exponential, but at 1 microM and above two exponentials were required. Log-log plots of the rise time or time constants of decay versus concentration were linear. Currents evoked by 2-meSATP and alpha, beta-meATP showed a similar concentration-dependence in their kinetics. 5. Inward currents evoked by ATP, 2-meSATP and alpha, beta-meATP (300 nM) were abolished by the P2-purinoceptor antagonist, suramin (100 microM). 6. UTP (10 microM) evoked similar transient inward currents, which were sensitive to suramin (100 microM). ATP (10 microM), applied 2 min beforehand, reduced the response to UTP (10 microM) by 80 +/- 10%. 7. This study shows that ATP, 2-meSATP and alpha, beta-meATP act via a suramin-sensitive P2x-purinoceptor to evoke rapid, transient inward currents in dissociated neurones of rat dorsal root ganglia. The pyrimidine nucleotide, UTP, was also active. It is likely that the agonists were acting at the P2x3-subtype to produce these effects.