Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Environmentally induced short-term variability in the growth rates of larval herring

Gallego, A. and Heath, M.R. and McKenzie, E. and Cargill, L.H. (1996) Environmentally induced short-term variability in the growth rates of larval herring. Marine Ecology Progress Series, 137 (1-3). pp. 11-23. ISSN 0171-8630

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The growth of herring Clupea harengus larvae within a patch tracked for approximately 20 d in the Orkney-Shetland area (north of Scotland) was investigated using otolith microstructure and, in a supporting role, condition factor analyses. Daily otolith growth responded conservatively to external factors, there being significant autocorrelation within individual otolith increment sequences. Past growth history explained most of the variation of the data. Both otolith microstructure and condition factor analyses yielded consistent results, indicating that short term variations in growth rate were related to environmental factors such as wind-induced turbulence level, and changes in illumination and prey concentration. A dome-shaped effect of wind-generated turbulence on larval growth was detected, which indicated a maximum response at a wind speed of approximately 14.5 m s(-1), a value very close to the speeds predicted by theoretical studies to generate maximum ingestion rates of larval fish.