Picture of person typing on laptop with programming code visible on the laptop screen

World class computing and information science research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by researchers from the Department of Computer & Information Sciences involved in mathematically structured programming, similarity and metric search, computer security, software systems, combinatronics and digital health.

The Department also includes the iSchool Research Group, which performs leading research into socio-technical phenomena and topics such as information retrieval and information seeking behaviour.

Explore

The unexpected transesterification between glycidyl methacrylate and 2-{[-2(dimethylamino)ethyl]methylamino}ethanol

Findlay, P.H. and Sherrington, D.C. (1999) The unexpected transesterification between glycidyl methacrylate and 2-{[-2(dimethylamino)ethyl]methylamino}ethanol. Macromolecules, 32 (18). pp. 5970-5972. ISSN 0024-9297

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In the course of some recent work involving novel metal chelating polymers,1 we identified monomer 1 as an attractive target monomer in view of its likely hydrophilic character, the presence of a substantial flexible linkage between the diamino ligand functionality and the methacrylate residue, and the likely ease of synthesis from commercially available glycidyl methacrylate (GMA) and 2-{[2(dimethylamino)ethyl]methylamino}ethanol (DAEMAE) via Scheme 1. While evaluating likely reaction conditions, we had occasion to perform one reaction without NaH and to our surprise were able to synthesize a product similar to 1 but clearly lacking the glycidyl derived spacer group in 1. Indeed, the analytical data suggested the product to be 2 (Figure 1), presumably arising from a transesterification reaction involving GMA and DAEMAE. Interestingly, we noted a similar reaction to this, between GMA and dextran, reported recently in this journal.2 This paper reports our efforts to understand the basis of this reaction and to probe its generality.