Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Thermal degradation of cross-linked polyisoprene and polychloroprene

Jiang, D.D. and Levchik, G.F. and Levchik, S.V. and Dick, C. and Liggat, J.J. and Snape, Colin and Wilkie, C.A. (2000) Thermal degradation of cross-linked polyisoprene and polychloroprene. Polymer Degradation and Stability, 68 (1). pp. 75-82. ISSN 0141-3910

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Polyisoprene and polychloroprene have been cross-linked either in solution or in solid state using free radical initiators. In the comparable experimental conditions higher cross-linking density was observed in the solid state process. Independent of the cross-linking method, polychloroprene tended to give a higher gel content and cross-link density than does polyisoprene. Infrared characterization of the cross-linked materials showed cis-trans isomerization occurred in the polyisoprene initiated by benzoyl peroxide, whereas no isomerization was found in the samples initiated by dicumyl peroxide. Polyisoprene does not cross-link by heating in a thermal analyzer, whereas polychloroprene easily undergoes cross-linking in such conditions. Infrared spectroscopy showed that in the case of polyisoprene, rearrangements occur upon heating which lead to the formation of terminal double bonds, while polychloroprene loses hydrogen chlorine which leads to a conjugated structure. There is apparently some enhancement of the thermal and thermal oxidative stability of polyisoprene because of the cross-linking. Cross-linked polychloroprene is less thermally stable than the virgin polymer. Cross-linking promotes polymers charring in the main step of weight loss in air, which leads to enhanced transitory char.

Item type: Article
ID code: 17502
Keywords: thermal degradation, cross-linked, polyisoprene, polychloroprene, Physical and theoretical chemistry, Materials Chemistry, Polymers and Plastics, Mechanics of Materials, Condensed Matter Physics
Subjects: Science > Chemistry > Physical and theoretical chemistry
Department: Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 20 Apr 2010 14:46
    Last modified: 05 Sep 2014 01:10
    URI: http://strathprints.strath.ac.uk/id/eprint/17502

    Actions (login required)

    View Item