Strathprints logo
Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Factors governing the formation of porosity in metal loaded cellulose during pyrolysis and the effects of pore structure on reactivity in o-2 and no

Ruiz, W. and Gascon, D. and Hall, P.J. (2000) Factors governing the formation of porosity in metal loaded cellulose during pyrolysis and the effects of pore structure on reactivity in o-2 and no. Fuel, 79 (13). pp. 1565-1571. ISSN 0016-2361

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A series of carbons have been made from cellulose that has been loaded with varying amounts of calcium, potassium and iron. Small angle X-ray scattering showed that the calcium-loaded chars produced carbons with mass fractal properties whereas potassium loaded chars produce carbons with surface fractal properties in the mesopore region. Calcium loaded chars were more microporous than potassium loaded chars. Iron loaded cellulose produced a Small Angle X-Ray Scattering (SAXS) pattern with two linear regions. The high q-scattering was characteristic of a highly microporous material. Differences in carbon properties were attributed to crosslinking reactions induced by the metals during pyrolysis. The reactivity of the carbons in O-2 and NO was determined and the ratio of the reactivities, R(NO)/R(O-2) noted. It was found that the presence of calcium and potassium both decreased R(NO)/R(O-2), but iron increased R(NO)/R(O-2) for a certain loading range. The latter was attributed to the reduced catalytic activity of iron for O-2 gasification and the pore structure of the iron loaded carbons.

Item type: Article
ID code: 17476
Keywords: metal loaded cellulose during pyrolysis, porosity, reactivity in O-2 and NO, Chemistry, Energy Engineering and Power Technology, Organic Chemistry, Chemical Engineering(all), Fuel Technology
Subjects: Science > Chemistry
Department: Unknown Department
Faculty of Engineering > Chemical and Process Engineering
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 04 May 2010 11:46
    Last modified: 05 Sep 2014 01:12
    URI: http://strathprints.strath.ac.uk/id/eprint/17476

    Actions (login required)

    View Item