Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A study of type ii and type iii power for testing hypotheses from unbalanced factorial designs

Lewsey, J.D. and Gardiner, W.P. and Gettinby, G. (2001) A study of type ii and type iii power for testing hypotheses from unbalanced factorial designs. Communications in Statistics - Simulation and Computation, 30 (3). pp. 597-609. ISSN 0361-0918

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Methods for analysing unbalanced factorial designs are well documented when there is at least one observation for all treatment combinations. The Type II and Type III methods, as they have become known, are the methods of choice for hypothesis testing purposes, but there is no consensus about which is more suitable. The aim of this paper is to assess how the deterioration of the balanced structure in a given designinfluences Type II and Type III power, both when negligible/ insignificant interactions and no interactions exist. A simulation study was set up using 726 unbalanced designs which stem from a 23 factorial design with three replicates per cell. The sampling scheme was chosen so that the interaction effect was negligible and associated with low power. A separate study investigated a 20% random sample of the unbalanced designs identified above, but fixing the interaction effect to be zero. The results from the simulation study showed that, regardless of how many observations were lost from the balanced design, the median Type II power was greater and the inter-quartile range of Type II power wider than the corresponding values for Type III power. This is an important message for practitioners, namely that the Type II method is, on average, more powerful than the Type III method but is also more influenced by cell patterning than the Type III method. There was also some evidence to suggest that up to a certain point, which is particular to the factorial design set-up, as more observations are lost the Type II method will be increasingly more powerful than the Type III method.