Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules

Hankin, S.M. and Tasker, A.D. and Robson, L. and Ledingham, K.W.D. and Fang, X. and McKenna, P. and McCanny, T. and Singhal, R.P. (2002) Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules. Rapid Communications in Mass Spectrometry, 16 (2). pp. 111-116. ISSN 0951-4198

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Femtosecond laser time-of-flight mass spectra of solid samples of trinitrobenzene (TNB), trinitrotoluene (TNT) and trinitrophenol (TNP) have been recorded. Desorption of the solid samples was enacted by the fourth harmonic output (266 nm) of a 5 ns Nd:YAG laser. Subsequent femtosecond post-ionisation of the plume of neutral molecules was achieved using 800 nm laser pulses of 80 fs duration. Mass spectra have been recorded for desorption laser intensities from 2-6 × 109 W cm-2 with ionisation laser intensities between 2 × 1014 and 6 × 1015 W cm-2. Femtosecond laser ionisation has been shown to be capable of generating precursor and characteristic high-mass fragment ions for labile nitro-aromatic molecules commonly used in high-explosive materials. This feature is critical in the future development of femtosecond laser-based analytical instruments that can be used for complex molecular identification and quantitative analysis of environmentally important labile molecules. Furthermore, a comparison of femtosecond post-ionisation mass spectra with standard 70 eV electron impact data has revealed similarities in the spectra and hence the fragmentation processes.