Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules

Hankin, S.M. and Tasker, A.D. and Robson, L. and Ledingham, K.W.D. and Fang, X. and McKenna, P. and McCanny, T. and Singhal, R.P. (2002) Femtosecond laser time-of-flight mass spectrometry of labile molecular analytes: laser-desorbed nitro-aromatic molecules. Rapid Communications in Mass Spectrometry, 16 (2). pp. 111-116. ISSN 0951-4198

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Femtosecond laser time-of-flight mass spectra of solid samples of trinitrobenzene (TNB), trinitrotoluene (TNT) and trinitrophenol (TNP) have been recorded. Desorption of the solid samples was enacted by the fourth harmonic output (266 nm) of a 5 ns Nd:YAG laser. Subsequent femtosecond post-ionisation of the plume of neutral molecules was achieved using 800 nm laser pulses of 80 fs duration. Mass spectra have been recorded for desorption laser intensities from 2-6 × 109 W cm-2 with ionisation laser intensities between 2 × 1014 and 6 × 1015 W cm-2. Femtosecond laser ionisation has been shown to be capable of generating precursor and characteristic high-mass fragment ions for labile nitro-aromatic molecules commonly used in high-explosive materials. This feature is critical in the future development of femtosecond laser-based analytical instruments that can be used for complex molecular identification and quantitative analysis of environmentally important labile molecules. Furthermore, a comparison of femtosecond post-ionisation mass spectra with standard 70 eV electron impact data has revealed similarities in the spectra and hence the fragmentation processes.