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Abstract. Lyapunov exponents give valuable information about long term dynamics. The discrete and continu-
ous QR algorithms are widely used numerical techniques for computing approximate Lyapunov exponents, although
they are not yet supported by a general error analysis. Here, a rigorous convergence theory is developed for both the
discrete and continuous QR algorithm applied to a constant coefficient linear system with real distinct eigenvalues.
For the discrete QR algorithm, the problem essentially reduces to one of linear algebra for which the timestepping
and linear algebra errors uncouple and precise convergence rates are obtained. For the continuous QR algorithm, the
stability, rather than the local accuracy, of the timestepping algorithm is relevant, and hence the overall convergence
rate is independent of the stepsize. In this case it is vital to use a timestepping method that preserves orthogonality in
the ODE system. We give numerical results to illustrate the analysis. Further numerical experiments and a heuristic
argument suggest that the convergence properties carry through to the case of complex conjugate eigenvalue pairs.
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1. Introduction. Several authors have derived numerical algorithms for the compu-

tation of Lyapunov exponents of ordinary differential equations (ODEs); see [4, 5] for an

overview. However, there is little error analysis to justify the use of these algorithms. In

this work, we consider the discrete and continuous QR algorithms, and in order to establish

a rigorous convergence result we restrict attention to a simple class of test problems—linear,

constant coefficient systems. In this case the Lyapunov exponents reduce to the real parts of

the eigenvalues of the Jacobian matrix and the discrete and continuous QR algorithms be-

come closely related to the orthogonal iteration process in numerical linear algebra. In order

to develop a convergence theory for the discrete QR algorithm, it is necessary to deal simul-

taneously with the limits ∆t → 0 and T → ∞, where ∆t is the timestep used for the ODE

solver and [0, T ] is the truncation of [0,∞). We resolve this by allowing T to behave like a

negative power of ∆t. For the continuous QR algorithm, the use of a timestepping method

that preserves orthogonality is vital for convergence.

In §2 we define the QR algorithms, state our assumptions and give the main convergence

theorems. These theorems are proved in §3. Section 4 presents some numerical results that

back up the theory. Although the convergence results apply only for the case of real distinct

eigenvalues, we also perform numerical tests involving complex conjugate pairs. It appears

that the algorithms remain convergent in this case, despite the fact that only diagonal entries

are used (rather than 2× 2 blocks). This effect is illustrated in detail. Section 5 discusses the

results.

With the notable exception of [4], there has been relatively little attention paid to Lya-

punov exponent algorithms in the numerical analysis literature, and hence a general conver-

gence theory is lacking. In [4], a number of fundamental results are given that quantify the

error under various simplifying assumptions. In particular, a semi-heuristic discussion of the

convergence of the QR algorithms on constant coefficient ODEs is given; [4, pages 412–413].

However, the discussion does not mention how to resolve the ∆t → 0, T → ∞ issue and

∗Received October 25, 2000. Accepted for publication October 25, 2001. Recommended by W.B. Gragg.
†Department of Mathematics, University of Strathclyde, Glasgow, G1 1XH, Scotland. Email:

ta.emcd@maths.strath.ac.uk.
‡Department of Mathematics, University of Strathclyde, Glasgow, G1 1XH, Scotland. Email:

djh@maths.strath.ac.uk. This research was supported by the Engineering and Physical Sciences Research
Council of the UK under grant GR/M42206.

234



Error analysis of QR algorithms for computing Lyapunov exponents 235

rates of convergence are not given. Our work can be regarded as an attempt to make rigorous

that discussion in [4].

Overall, we aim to provide a rigorous analysis of the rate of convergence of the QR

algorithms on a tractable class of test problems. The analysis makes use of convergence

theory from numerical linear algebra, but also relies on results from the classical numerical

ODE literature and more recent ideas from geometric integration.

2. Motivation and Convergence Results. We begin by describing the algorithms on

time-dependent linear systems. The algorithms may also be applied to nonlinear systems

after linearizing along a solution trajectory [4].

For the n-dimensional linear system

ẏ(t) = A(t)y(t),(2.1)

we let Y (t) ∈ IRn×n denote the fundamental solution matrix for (2.1), so that Ẏ (t) =
A(t)Y (t) and Y (0) = I . A continuous QR factorization of Y (t) then gives

Y (t) = Q(t)R(t),(2.2)

where Q(t) ∈ IRn×n is orthogonal and R(t) ∈ IRn×n is upper triangular with positive diag-

onal entries. (Throughout this work, we will ask for positive diagonal entries in a triangular

QR factor—this makes the QR factorization of a nonsingular matrix unique [6].) Under ap-

propriate regularity assumptions, it may be shown [4] that the Lyapunov exponents for the

system (2.1) satisfy

λ[k] = lim
t→∞

1

t
log Rkk(t), 1 ≤ k ≤ n.(2.3)

2.1. Discrete QR Algorithm. The discrete QR algorithm for (2.1) is based on the fol-

lowing process. Choose a sequence 0 = t0 < t1 < t2 < · · ·, with limj→∞ tj = ∞. Set

Q0 = I and for j = 0, 1, 2, . . . let

Żj(t) = A(t)Zj(t), Zj(tj) = Qj, tj ≤ t ≤ tj+1,(2.4)

and take the QR factorization

Zj(tj+1) = Qj+1Rj+1.(2.5)

To see why (2.4) and (2.5) are useful, let Fj(t) ∈ IRn×n be such that Ḟj(t) = A(t)Fj(t)
and Fj(tj) = I . Then

Zj(tj+1) = Fj(tj+1)Qj and Y (tj+1) = Fj(tj+1)Y (tj).(2.6)

It follows from (2.5) and (2.6) that

Y (tj+1) = Zj(tj+1)Qj
T Y (tj) = Qj+1Rj+1Qj

T Y (tj).

Continuing this argument we find that

Y (tj+1) = Qj+1Rj+1Qj
T QjRjQj−1

T Y (tj−2)

...

= Qj+1Rj+1Rj · · ·R1.
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Hence, (2.4) and (2.5) contain the information needed to construct the QR factorization of

Y (t) at each point tj , and so, from (2.3),

λ[k] = lim
N→∞

1

tN
log




N∏

j=1

(Rj)kk



 , 1 ≤ k ≤ n.(2.7)

To convert (2.4) and (2.5) into a numerical algorithm, two types of approximation are

introduced.

1. The ODE system (2.4) is solved numerically. We will suppose that a constant spac-

ing ∆t := tj+1 − tj is used and a one–step numerical method with stepsize ∆t is applied for

each iteration.

2. The infinite time interval is truncated, so that a finite number of iteration steps is

used.

2.2. Continuous QR Algorithm. The continuous QR algorithm proceeds as follows.

Differentiating (2.2) we have

Ẏ = Q̇R + QṘ = AQR,(2.8)

from which we obtain

QT Q̇ − QT AQ = −ṘR−1.(2.9)

Note that ṘR−1 is upper triangular and, since QT Q = I , QT Q̇ is skew–symmetric. It thus

follows from (2.9) that QT Q̇ = H(t, Q), where

Hij =






(QT AQ)ij , i > j,
0, i = j,

−(QT AQ)ji, i < j.
(2.10)

Thus, the matrix system

Q̇(t) = Q(t)H(t, Q(t)),(2.11)

can be solved to obtain Q(t). From (2.9)

Ṙ = (QT AQ − QT Q̇)R,

so using (2.10) and the skew-symmetry of QT Q̇ this gives

Ṙii = (QT AQ)iiRii, i = 1, . . . , n.(2.12)

Therefore,

λ[k] = lim
t→∞

1

t
log Rkk(t) = lim

t→∞

1

t

∫ t

0

(QT (s)A(s)Q(s))kk ds.(2.13)

In order to implement the continuous QR algorithm numerically two types of approxi-

mation are required.

1. The nonlinear ODE system (2.11) is solved numerically. We assume that a constant

stepsize ∆t := tj − tj−1 is used.

2. The integral in (2.13) is approximated numerically over a finite range [0, T ]. Fol-

lowing [4] we use the composite trapezoidal rule.
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Note also that solutions of the ODE system (2.11) preserve orthogonality—if

Q(0)T Q(0) = I , then Q(t)T Q(t) = I , for all t > 0. It is natural to ask for this prop-

erty to be maintained by the numerical method. (Indeed, we will show that this is vital for

convergence.) We consider two classes of numerical method that preserve orthogonality.

(i) Projected Runge–Kutta (PRK) methods. Here, a Runge–Kutta method is ap-

plied over each timestep, and the (generally non-orthogonal) solution is perturbed to an or-

thogonal one. This can be done by replacing the matrix by its orthogonal polar factor, which

corresponds to a projection in the Frobenius norm. Alternatively, the matrix can be replaced

by its orthogonal QR factor, a process that is closely related to the Frobenius norm projection

[7].

(ii) Gauss–Legendre–Runge–Kutta (GLRK) methods. These are one–step methods

that automatically preserve orthogonality of the numerical solution.

Both types of integrator have been examined in [3]. We note that orthogonal integration can

be viewed within the much more general framework of Lie group methods; see [8].

2.3. Convergence Results. In order to prove sharp convergence results for the algo-

rithms, we restrict attention to the case where A(t) is constant, A(t) ≡ A, where A has real,

distinct eigenvalues {λ[k]}n
k=1, ordered so that

exp(λ[1]) > exp(λ[2]) > · · · > exp(λ[n]).(2.14)

In this case {λ[k]}n
k=1 are also the Lyapunov exponents of the ODE. We also assume that

for each 1 ≤ k ≤ n − 1 no vector in the space spanned by the first k eigenvectors of A
is orthogonal to the space spanned by the first k columns of the identity matrix. This is an

extremely mild assumption that generalizes the traditional assumption made about the starting

vector in the power method; see, for example, [2, page 158].

2.3.1. Convergence of Discrete QR Algorithm. We let Zj denote the approximation

to Zj(tj) produced by the one-step numerical method on (2.4), and we suppose that

Zj+1 = S(∆tA)Zj ,

where S(z) is a rational function such that

S(z) = exp(z)
(
1 + O

(
∆tp+1

))
, for some integer p ≥ 1.(2.15)

This covers the case where the numerical method is a (explicit or implicit) Runge–Kutta

formula of order p. The discrete QR algorithm for computing an approximation l[k] to λ[k]

then has the following form, with Q0 = I .

Discrete QR algorithm

for j = 0, 1, . . . , N − 1
S(∆tA)Qj =: Qj+1Rj+1 (QR factorization)

end

ℓ[k] :=
1

T
log

N∏

j=1

(Rj)kk, where T := N∆t.(2.16)

In analysing the error |λ[k] − l[k]| there are two limits to be considered. We must allow

∆t → 0 in order to reduce the error of the ODE solver, but we must also allow T → ∞ to

reduce the error from truncating the time interval. Hence, in contrast to standard finite-time
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convergence theory [9], we require N → ∞ faster than ∆t → 0. We can accomplish this by

setting

T = K∆t−α,(2.17)

where K, α > 0 are constants. (So the number of timesteps N = K∆t−(α+1).) In this

framework we consider the single limit ∆t → 0. In practice this corresponds to repeating

the discrete QR algorithm with a smaller ∆t and a larger time interval T . The result that we

prove is stated below.

THEOREM 2.1. With the notation and assumptions above, there exists a constantC such

that, for all sufficiently small ∆t,

|ℓ[k] − λ[k]| ≤ C (∆tα + ∆tp) , 1 ≤ k ≤ n.(2.18)

Proof. See §3.2.

Our proof of Theorem 2.1 relies on the underlying convergence theory for orthogonal

iteration [2, 11]—this is also equivalent to the analysis for the QR algorithm [1, 15]. However,

the application of that theory is not entirely straightforward since we must study (a variant

of) orthogonal iteration on a matrix that is parametrized by ∆t. In particular, the naturally

arising linear contraction factor r
[k]
∆t, which is defined in §3.2, has the property that r

[k]
∆t → 1

as ∆t → 0. This, however, is balanced by the fact that the number N of iterations increases

rapidly as ∆t → 0, and, as shown in (3.13) below, (r
[k]
∆t)

N → 0. (This also emphasizes that

both limits ∆t → 0 and T → ∞ must be addressed in a convergence theory.)

2.3.2. Convergence of Continuous QR Algorithm. The continuous QR algorithm for

computing an approximation ℓ[k] to λ[k] can be summarized as follows, with Q0 = I .

Continuous QR algorithm

Solve (2.11) numerically to obtain {Qj ≈ Q(tj)}N
j=0.

ℓ[k] =
1

T

∆t

2

N∑

j=1

[
(QT

j−1AQj−1)kk + (QT
j AQj)kk

]
, where T = N∆t.(2.19)

The following convergence theorem holds.

THEOREM 2.2. Suppose the ODE (2.11) is solved using a PRK or GLRK method of

classical order p ≥ 1. Then with the notation and assumptions above there exists a constant

C such that, for sufficiently small ∆t,

|ℓ[k] − λ[k]| ≤ C

T
, 1 ≤ k ≤ n.(2.20)

Proof. See §3.3.

Note that ∆t does not appear in the error bound (2.20). This emphasizes that the struc-

tural properties of the ODE method (orthogonality preservation and stability) are relevant, but

not the precise classical order of convergence.

3. Convergence Proofs.
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3.1. Schur Matrix and Orthogonal Iteration. We begin by reviewing some relevant

concepts from numerical linear algebra. See [2, 6, 10] for more details.

DEFINITION 3.1. Given B ∈ IRn×n with distinct, real eigenvalues {µ[k]}n
k=1 ordered

so that |µ[1]| > |µ[2]| > · · · > |µ[n]|, there exists an orthogonal matrix Q⋆, referred to as a

Schur matrix, such that

QT
⋆ BQ⋆ = Υ,

where Υ is upper triangular with main diagonal given by µ[1], . . . , µ[n]. The Schur matrix is

unique up to a factor of ±1 multiplying each column. The columns of Q⋆ (denoted by q
[k]
⋆ )

are called Schur vectors, and it follows that the subspace spanned by {q [1]
⋆ , q

[2]
⋆ , . . . , q

[k]
⋆ } is

identical to the subspace spanned by the eigenvectors ofB that correspond to the eigenvalues

µ[1], µ[2], . . . , µ[k].

Orthogonal iteration may be regarded as a technique for computing an approximate Schur

decomposition. Given B ∈ IRn×n, orthogonal iteration proceeds as follows, with Q0 = I .

Orthogonal Iteration

for j = 0, 1, . . .
BQj =: Qj+1Rj+1 (QR factorization)

end
Under the mild assumption that for each 1 ≤ k ≤ n − 1 no vector contained in

span{q[1]
⋆ , q

[2]
⋆ , . . . , q

[k]
⋆ } is orthogonal to the space spanned by the first k columns of the

identity matrix, this iteration converges linearly, in the manner outlined in Lemma 3.2 below.

We let q
[k]
j denote the kth column of Qj , and let µ

[k]
j denote

(
QT

j BQj

)
kk

. To be definite, we

regard ‖ · ‖ as the Euclidean norm. We also write ‖v ±w‖ to mean min{‖v + w‖, ‖v −w‖}.

LEMMA 3.2. With the assumptions and notation above, there exist constants C and D
such that

‖q[k]
j ± q

[k]
⋆ ‖ ≤ C(r[k])j and |µ[k]

j − µ[k]| ≤ D(r[k])j , 1 ≤ k ≤ n,(3.1)

where

r[1] = |µ[2]/µ[1]|,
r[k] = max(|µ[k+1]/µ[k]|, |µ[k]/µ[k−1]|), 1 < k < n,

r[n] = |µ[n]/µ[n−1]|.

Proof. This result is stated without proof in [11]. Convergence analysis for orthogonal

iteration is usually performed in terms of subspaces: generally, the subspace spanned by the

first k columns of Qj converges to the subspace spanned by the first k columns of Q⋆ at a

linear rate determined by |µ[k+1]/µ[k]| [2, 6, 16]. By considering subspaces of dimensions k
and k − 1, the result (3.1) follows.

3.2. Discrete QR Convergence Analysis.

3.2.1. Orthogonal Iteration Error. In this subsection and the next, we use κi to denote

generic constants.

Comparing the two algorithms, we see that the matrices Qj in the discrete QR algorithm

are precisely the matrices Qj that arise when orthogonal iteration is applied to B = S(∆tA).
Hence, we may appeal to the convergence theory in Lemma 3.2. However, it is vital to exploit

the fact that ∆t is a small parameter and S(z) approximates exp(z). Using a second subscript

to emphasize ∆t-dependence, we let S(∆tA) = Q⋆Υ∆tQ
T
⋆ denote a Schur decomposition
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of S(∆tA) with (Υ∆t)kk = µ
[k]
∆t. Similarly, we let Qj,∆t have kth column q

[k]
j,∆t and write

µ
[k]
j,∆t for q

[k]
j,∆t

T

S(∆tA)q
[k]
j,∆t.

First we note that with the ordering (2.14) on the eigenvalues of A, for sufficiently small

∆t we have, from (2.15),

µ
[1]
∆t > µ

[2]
∆t > · · · > µ

[n]
∆t > 0.(3.2)

Following the proof of Lemma 3.2 for this parameterized matrix, we find that the Schur vector

convergence bound holds with a constant independent of ∆t; that is,

‖q[k]
j,∆t ± q

[k]
⋆ ‖ ≤ κ1(r

[k]
∆t)

j ,(3.3)

where r
[k]
∆t is defined as in Lemma 3.2 with each µ[k] replaced by µ

[k]
∆t. We then have

|µ[k]
j,∆t − µ

[k]
∆t| = |q[k]

j,∆t

T

S(∆tA)q
[k]
j,∆t − q

[k]
⋆

T

S(∆tA)q
[k]
⋆ |

= |q[k]
j,∆t

T

(I + (S(∆tA) − I)) q
[k]
j,∆t − q

[k]
⋆

T

(I + (S(∆tA) − I) q
[k]
⋆ |

= |q[k]
j,∆t

T

q
[k]
j,∆t − q

[k]
⋆

T

q
[k]
⋆ + (q

[k]
j,∆t ± q

[k]
⋆ )T (S(∆tA) − I) q

[k]
j,∆t

− q
[k]
⋆

T

(S(∆tA) − I) (q
[k]
⋆ ± q

[k]
j,∆t)|

≤ 2‖q[k]
j,∆t ± q

[k]
⋆ ‖‖S(∆tA) − I‖

≤ κ2∆t‖A‖‖q[k]
j,∆t ± q

[k]
⋆ ‖

≤ κ3∆t(r
[k]
∆t)

j ,(3.4)

for sufficiently small ∆t, where we have used the property (2.15) and the bound (3.3). The

inequality (3.4) shows that when orthogonal iteration is applied to a matrix of the form

S(∆tA) = I + ∆tA + O
(
∆t2

)
then the “constant” in the eigenvalue convergence bound is

O (∆t).

We note from (2.16) that the discrete QR algorithm does not use QT
j,∆tS(∆tA)Qj,∆t,

but rather the shifted version Rj := QT
j,∆tS(∆tA)Qj−1,∆t. However, it is readily shown

that ‖q[k]
j,∆t − q

[k]
j−1,∆t‖ ≤ κ4∆t(r

[k]
∆t)

j , and hence the bound (3.4) also implies

|q[k]
j,∆t

T

S(∆tA)q
[k]
j−1,∆t − q

[k]
⋆

T

S(∆tA)q
[k]
⋆ | ≤ κ5∆t(r

[k]
∆t)

j .(3.5)

In summary, (3.5) shows that the computed diagonal entries (Rj,∆t)kk in (2.16) approx-

imate the corresponding eigenvalues µ
[k]
∆t of S(A∆t) according to

(Rj,∆t)kk = µ
[k]
∆t(1 + γ

[k]
j,∆t), where |γ[k]

j,∆t| ≤ κ6∆t(r
[k]
∆t)

j .(3.6)

3.2.2. ODE Error. We now incorporate the ODE solving error in order to obtain the

overall error bound.

Since A is diagonalizable, it is straightforward to show from (2.15) that the eigenvalue

µ
[k]
∆t of S(∆tA) is related to the eigenvalue exp(∆tλ[k]) of exp(∆tA) by

µ
[k]
∆t = exp(∆tλ[k])(1 + δ

[k]
∆t), where |δ[k]

∆t| ≤ κ7∆tp+1.(3.7)
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Now, using (3.6) and (3.7), the computed Lyapunov exponent ℓ[k] in (2.16) satisfies

ℓ[k] =
1

T
log

N∏

j=1

(
exp(∆tλ[k])(1 + δ

[k]
∆t)(1 + γ

[k]
j,∆t)

)
,

= λ[k] +
1

T




N∑

j=1

log(1 + δ
[k]
∆t) +

N∑

j=1

log(1 + γ
[k]
j,∆t)



 .(3.8)

We note from (3.6) and (3.7) that both |γ[k]
j,∆t| and |δ[k]

∆t| can be made arbitrarily small by

reducing ∆t. Hence, for sufficiently small ∆t,

0 < | log(1 + δ
[k]
∆t)| ≤ 2|δ[k]

∆t| and 0 < | log(1 + γ
[k]
j,∆t)| ≤ 2|γ[k]

j,∆t|.
In (3.8), using (3.6) and (3.7) and recalling that T = N∆t, this gives

|ℓ[k] − λ[k]| ≤ κ8



 1

T

N∑

j=1

γ
[k]
j,∆t +

δ
[k]
∆t

∆t



 ≤ κ9



∆t

T

N∑

j=1

(r
[k]
∆t)

j + ∆tp



 .

Summing the geometric series gives

|ℓ[k] − λ[k]| ≤ κ9

(
∆t

T

r
[k]
∆t(1 − (r

[k]
∆t)

N )

1 − r
[k]
∆t

+ ∆tp

)
.(3.9)

Now, it follows from (2.15) that

µ
[k+1]
∆t

µ
[k]
∆t

= exp
(
∆t(λ[k+1] − λ[k])

) (
1 + O

(
∆tp+1

))
,

and hence,

0 < r
[k]
∆t ≤ exp

(
−∆tǫ[k]

) (
1 + O

(
∆tp+1

))
,(3.10)

where

ǫ[1] := λ[1] − λ[2] > 0, ǫ[n] := λ[n−1] − λ[n] > 0(3.11)

and

ǫ[k] := min{λ[k] − λ[k+1], λ[k−1] − λ[k]} > 0, for 1 < k < n.(3.12)

So, for small ∆t,

0 < r
[k]
∆t < exp(−∆tǫ[k]/2)

and, using (2.17),

0 <
(
r
[k]
∆t

)N

< exp(−N∆tǫ[k]/2) = exp(−K∆t−αǫ[k]/2) → 0 as ∆t → 0.(3.13)

It also follows from (3.10) that

0 < r
[k]
∆t ≤ 1 + κ10∆t and 1 − r

[k]
∆t ≥ κ11∆t.(3.14)

Using (3.13) and (3.14) in (3.9) leads to the bound

|ℓ[k] − λ[k]| ≤ κ12

(
1

N∆t
+ ∆tp

)
≤ κ13 (∆tα + ∆tp) ,(3.15)

which establishes Theorem 2.1.
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3.3. Continuous QR Convergence Analysis.

3.3.1. Convergence of q
[k]
j to q

[k]
⋆ . It follows from the theory of QR flows that any

solution of the system (2.11) approaches a fixed point as t → ∞; see, for example, [16]. This

fixed point must be a Schur matrix Q⋆ of A. Our analysis below is aimed at showing that

the ODE solver applied to (2.11) also asymptotes to Q⋆. This is not a trivial task because,

regarding (2.11) as an ODE in IRn×n, if the problem is linearized about Q(t) = Q⋆ then

no conclusion can be drawn about stability—eigenvalues of zero real part arise. Hence, a

straightforward linearization argument cannot be applied. We also note that although the

only orthogonal fixed points of (2.11) correspond to Schur matrices of A, there are many

other non-orthogonal fixed points. For example, σQ⋆ for any σ ∈ IR is also a fixed point. It

follows that a numerical method that does not preserve orthogonality may drift towards a non-

orthogonal steady-state. We have observed this behaviour in practice, and its consequences

are illustrated in §4.

The following lemma forms the main part of our convergence proof.

LEMMA 3.3. If a PRK or GLRK method is used to solve the ODE(2.11), then for suffi-

ciently small ∆t the kth column of the numerical solution, q
[k]
j , converges to a Schur vector

q
[k]
⋆ linearly:

‖q[k]
⋆ − q

[k]
j ‖ ≤ C(r̂max + D∆tp)j∆t,(3.16)

where C and D are constants, with

r̂max = max
1≤i≤n

r̂[i], r̂[k] = exp(−ǫ[k])

and ǫ[k] is defined in (3.11) and (3.12).

Proof. First we let Ψ(Q) := QH(Q), where H(Q) is defined in (2.11). Now, note that

Ψ(Q) is locally Lipschitz, so given any bounded region B there exists a constant L = L(B)
such that

‖Ψ(W ) − Ψ(Q⋆)‖ ≤ L‖W − Q⋆‖, ∀W ∈ B, with W T W = I.

Since Ψ(Q⋆) = 0, we have

‖Ψ(W )‖ ≤ L‖W − Q⋆‖, ∀W ∈ B, with W T W = I.(3.17)

Also, we note that any Runge–Kutta method applied to Q̇(t) = Ψ(Q(t)) has a factor of

‖Ψ(Qj)‖ in its local error expression—this follows from classical order theory [9]. Hence, if

we let Qj(t) denote the local solution of (2.11) over [ti, ti+1], so that Q̇j(t) = Ψ(Qj(t)) and

Qj(tj) = Qj , then

‖Qj+1 − Qj(tj+1)‖ ≤ κ2∆tp+1‖Ψ(Qj)‖,(3.18)

for any GLRK method. In the case of PRK methods, projection can no more than double the

local error and “approximately projecting” onto the orthogonal QR factor increases the local

error by at most a factor 1 + 2
√

2 asymptotically [7]. So (3.18) is valid for both GLRK and

PRK methods.

Now we know from [16] that for the exact flow of (2.11), the kth column of Q(t), which

we denote q[k](t), converges linearly to a Schur vector q
[k]
⋆ at rate r[k]. So we may choose

a time T̂ such that Q(T̂ ) ∈ B, where B is a ball containing Q⋆ with the property that if

Q̂(0) ∈ B and Q̂(t) solves (2.11) then

‖q̂[k](t + ∆t) − q
[k]
⋆ ‖ ≤ (r̂[k])∆t‖q̂[k](t) − q

[k]
⋆ ‖, ∀ t ≥ T̂ .(3.19)
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Now, since the numerical method is convergent over finite time intervals, the inequality (3.16)

will hold for j∆t ≤ T̂ and ∆t sufficiently small. For later times, we have, from (3.17) and

(3.18),

‖q[k]
j+1 − q

[k]
j (tj+1)‖ ≤ κ3∆tp+1‖Qj − Q⋆‖.(3.20)

For ease of notation, let

e
[k]
j := ‖q[k]

j − q
[k]
⋆ ‖.(3.21)

Then using (3.19) and (3.20), we obtain

e
[k]
j+1 ≤ ‖q[k]

j+1 − q
[k]
j (tj+1)‖ + ‖q[k]

j (tj+1) − q
[k]
⋆ ‖

≤ (κ3∆tp+1 + (r̂max)
∆t) max

1≤i≤n
e
[i]
j .(3.22)

For ∆t sufficiently small, it can be shown that

κ3∆tp+1 + (r̂max)
∆t ≤ (r̂max + κ4∆tp)∆t,

where κ4 = 8κ3r̂max. Hence (3.22) gives

max
1≤i≤n

e
[i]
j+1 ≤ (r̂max + κ4∆tp)∆t max

1≤i≤n
e
[i]
j .

It follows that

max
1≤i≤n

e
[i]
j+1 ≤ κ5(r̂max + κ4∆tp)∆t(j+1).(3.23)

3.3.2. Trapezoidal Rule Error. The error in the Lyapunov exponent approximation ℓ[k]

in (2.19) satisfies

|λ[k] − ℓ[k]| =

∣∣∣∣∣∣
(q

[k]
⋆

T

Aq
[k]
⋆ ) − 1

T

∆t

2

N∑

j=1

[
(q

[k]
j−1

T

Aq
[k]
j−1) + (q

[k]
j

T

Aq
[k]
j )

]∣∣∣∣∣∣

=
1

2N

∣∣∣∣∣∣

N∑

j=1

[(
q
[k]
⋆

T

Aq
[k]
⋆ − q

[k]
j−1

T

Aq
[k]
j−1

)
+

(
q
[k]
⋆

T

Aq
[k]
⋆ − q

[k]
j

T

Aq
[k]
j

)]∣∣∣∣∣∣

=
1

2N

∣∣∣∣∣∣

N∑

j=1

[
(q

[k]
⋆

T

− q
[k]
j−1

T

)Aq
[k]
⋆ + q

[k]
j−1

T

A(q
[k]
⋆ − q

[k]
j−1)

]

+

N∑

j=1

[
(q

[k]
⋆

T

− q
[k]
j

T

)Aq
[k]
⋆ + q

[k]
j

T

A(q
[k]
⋆ − q

[k]
j )

]∣∣∣∣∣∣

≤ ‖A‖
N

N∑

j=1

(
e
[k]
j−1 + e

[k]
j

)
,

where we have used ‖q[k]
j ‖ = 1, since the numerical scheme preserves orthogonality. Making

use of Lemma 3.3, we obtain

|λ[k] − ℓ[k]| ≤ ‖A‖
N

N∑

j=1

[
κ5(r̂max + κ6∆tp)(j−1)∆t + κ5(r̂max + κ6∆tp)j∆t

]
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≤ 2κ5‖A‖
N

N∑

j=1

(r̂max + κ6∆tp)∆t(j−1)

=
2κ5‖A‖

N

[
1 − (r̂max + κ6∆tp)T

1 − (r̂max + κ6∆tp)∆t

]
.

For a sufficiently small ∆t, we have

1 − (r̂max + κ6∆tp)T ≤ 1 and 1 − (r̂max + κ6∆tp)∆t ≥ κ6∆t.

Therefore,

|λ[k] − ℓ[k]| ≤ 2κ7‖A‖
N∆t

=
κ8

T
,

which establishes Theorem 2.2.

4. Numerical Tests.

4.1. Real Distinct Eigenvalues.

4.1.1. Discrete QRAlgorithm. In this subsection we illustrate Theorem 2.1, testing the

three cases p > α, p = α and p < α for a 4 × 4 system. Given the Lyapunov exponents

{λ[k]}4
k=1, we produce the Jacobian matrix A by forming A = X diag(λ[k])X−1, where

X is a random matrix. (More precisely, X is formed using rand(’state’,0) and X

= rand(4,4) in Matlab [14].) We perform QR factorizations using the modified Gram-

Schmidt method; see [6].

In Figures 4.1–4.4 we plot the error in each Lyapunov exponent approximation (2.16)

against ∆t, on a log-log scale. The dashed line with ’◦’ markers in each picture is of the

slope min{α, p}, given by the convergence rate bound of Theorem 2.1.

In Figure 4.1 we take Lyapunov exponents 5, 2, 0, and −1. We use S(z) = 1 + z +
z2/2 + z3/6 + z4/24 in (2.15), which corresponds to a 4th order, 4 stage, explicit Runge–

Kutta method, so p = 4. We set K = 0.5 and α = 1.

For Figure 4.2 we use Lyapunov exponents 1,−1,−5, and −10 and take S(z) = 1+z+
z2/2, which corresponds to a 2nd order, 2 stage, explicit Runge–Kutta method, so p = 2. We

set K = 0.005 and α = 2.

Figure 4.3 arises with Lyapunov exponents 2, 1,−2, and −2.5. In this case we use

S(z) = 1 + z + z2/2, so p = 2, and set K = 0.1 and α = 2.5.

In Figure 4.4 we illustrate the use of an implicit ODE timestepping method. We take

S(z) = 1/(1 − z), which corresponds to the Backward Euler method [9], for which p = 1.

We used Lyapunov exponents of 3.5, 1, −1, and −20, and set K = 0.05 and α = 1.

In these tests, we see that the convergence rate of ∆tmin(α,p) arising in Theorem 2.1 is

indeed an upper bound on the actual convergence rate, and it is generally sharp.

4.1.2. Continuous QR Algorithm. We now test the convergence of the continuous

QR algorithm in a similar manner to §4.1.1. In Figure 4.5 we use Lyapunov exponents

3, 0,−2,−3. We take ∆t = 0.1 and solve (2.11) using the classical 4th order Runge–Kutta

method with “projection” into the orthogonal QR factor using modified Gram-Schmidt.

In Figure 4.6 we take Lyapunov exponents 7, 6, 1,−1. We set ∆t = 0.05 and use the

1-stage 2nd order GLRK method to solve the ODE (2.11).

Figures 4.5 and 4.6 show that the bound in Theorem 2.2 is sharp—on a log-log scale the

slope of each line is close to −1.

We include Figure 4.7 as an illustration of what may happen when a method that does

not preserve orthogonality is used. In this case, we have taken Lyapunov exponents 8, 5, 2, 1,
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FIG. 4.1. Discrete QR algorithm: λ = {5, 2, 0,−1}, p = 4, α = 1.
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FIG. 4.2. Discrete QR algorithm: λ = {1,−1,−5,−10}, p = 2, α = 2.

∆t = 0.04, and used the classical 4th order Runge–Kutta method. It is clear that the algorithm

is no longer converging to the true Lyapunov exponents. Closer inspection has shown this

non-convergence is caused by the ODE solver approaching a steady-state of (2.11) that is not

orthogonal, and hence is not a Schur matrix.

4.2. Complex Conjugate Eigenvalues. We now give some numerical results for the

case of complex conjugate eigenvalues. In this case the Lyapunov exponents are the real

parts of the eigenvalues. The next subsection reviews the behaviour of orthogonal iteration
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FIG. 4.3. Discrete QR algorithm: λ = {2, 1,−2,−2.5}, p = 2, α = 2.5.
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FIG. 4.4. Discrete QR algorithm: λ = {3.5, 1,−1,−20}, p = 1, α = 1.

on a fixed matrix and then looks at the discrete QR algorithm. Subsection 4.2.2 deals with

the continuous QR algorithm.

4.2.1. Discrete QR Algorithm. If the orthogonal iteration process described in §3.1

is applied to a matrix B that has a complex conjugate pair of eigenvalues, then QT
j BQj

converges to a block triangular form. The eigenvalues of the appropriate 2 × 2 block of

QT
j BQj converge to the corresponding complex conjugate eigenvalue pair (although the 2×2

block itself will not have a fixed limit). For a fuller explanation of convergence of the QR
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FIG. 4.5. Continuous QR Algorithm, λ = {3, 0,−2,−3}, PRK4, ∆t = 0.1.
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FIG. 4.6. Continuous QR Algorithm: λ = {7, 6, 1,−1}, GLRK2, ∆t = 0.05.

algorithm in the complex case, see [1, 12, 17].

It can be shown that the sum of entries on the diagonal of B which correspond to the

complex conjugate pair converge linearly to the sum of the real parts of the pair. This cor-

responds to the fact that the trace of a 2 × 2 block is equal to the sum of its eigenvalues.

Therefore, we conclude that, when summed, the diagonal entries of QT
j BQj contain the real

part eigenvalue information that relates to the Lyapunov exponents.

The discrete QR algorithm for Lyapunov exponents, however, does not use QT
j BQj but
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FIG. 4.7. Continuous QR Algorithm: λ = {8, 5, 2, 1}, RK4, ∆t = 0.04.

the shifted version Rj+1 = QT
j+1BQj . The columns of Qj+1 that correspond to a com-

plex eigenvalue pair are typically different from the corresponding columns of Qj; the space

spanned by these columns is converging linearly but the columns themselves are not. Thus,

the diagonal entries of the 2 × 2 block of Rj+1 may differ greatly from the corresponding

entries in Bj+1. Numerical experiments have shown that the two diagonal entries of Rj+1,

even when summed, may not reveal any information about the real parts of the eigenvalues of

B, and it is tempting to assert that the discrete QR algorithm will fail in the case of complex

conjugate eigenvalues.

To test this assertion, Figure 4.8 gives results for the full discrete QR algorithm using a

matrix A with eigenvalues 4, 1 − 3i, 1 + 3i,−2 created as A = XDX−1, where

D =





4
1 3
−3 1

2





and X is a random matrix, as described in §4.1.1. We used S(z) = 1 + z + z2/2, so p = 2,

with K = 0.01 and α = 2. The figure shows the surprising result that the full discrete QR

algorithm is convergent with rate indicated by Theorem 2.1.

So why is the discrete QR algorithm still convergent for complex eigenvalues? Above we

were considering a ‘shifted’ version of orthogonal iteration applied to a fixed matrix, while

the example in Figure 4.8 deals with a matrix parametrized by ∆t and zooms in on the limit

∆t → 0. A heuristic explanation for the success of the full discrete QR algorithm is provided

by the observation that if A has a complex eigenvalue λ = a + ib, then the corresponding

eigenvalue of S(∆tA) looks like 1+a∆t+ ib∆t+O
(
∆t2

)
. The modulus of this eigenvalue

is 1 + 2a∆t + O
(
∆t2

)
—the imaginary part of λ has an O

(
∆t2

)
effect compared to the

O (∆t) effect of the real part. Hence, in the limit ∆t → 0 we expect the real eigenvalue

performance to be relevant.
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FIG. 4.8. Discrete QR algorithm: λ = {4, 1 ± 3i,−2}, p = 2, α = 2.

4.2.2. Continuous QR Algorithm. If the Jacobian matrix A contains a pair of complex

conjugate eigenvalues, then its (real) Schur form will be block upper–triangular with 2 × 2
blocks, the eigenvalues of which correspond to each pair of complex eigenvalues. Despite the

fact that the continuous QR algorithm uses only information about the diagonals, we observed

that the algorithm converged in practice (as did the discrete QR algorithm discussed in the

previous subsection). Figure 4.9 illustrates the behaviour.
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FIG. 4.9. Continuous QR algorithm: λ = {2, 1 ± i,−1}, PRK4, ∆t = 0.01.
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5. Discussion. Our approach in this work was to analyse QR algorithms on a simple

test problem, so that rigorous convergence rate bounds could be established. By choosing

A(t) constant in (2.1) and making the assumption (2.14), the mathematical problem reduces

to one of linear algebra—find the eigenvalues of A, although the corresponding analysis of

the numerical algorithms requires results from both numerical linear algebra and ODEs.

On this problem class the discrete QR algorithm is clearly not optimal. In particular, for

each j in (2.16), (Rj)kk is approximating the same quantity. Since the accuracy increases

with j, earlier values could be discarded. Indeed, the analysis in §3.2 can be used to show

that taking the extreme case ℓ[k] = (log(RN )kk)/∆t in (2.16) improves the error bound in

Theorem 2.1 to C1∆tp (independent of α > 0). However, for general time-dependent A(t)
it is clear from (2.7) that the averaging process inherent in (2.16) is necessary. Furthermore,

in the case where A(t) is constant but has complex conjugate eigenvalues, the averaging in

(2.16) may compensate for the fact that the algorithm looks only at diagonal elements (rather

than 2 × 2 blocks).

By a similar argument, the continuous QR algorithm loses optimality on this problem

class by timestepping to steady state rather than jumping there in a single step, but the

timestepping provides the averaging process that is needed for more general problems.

On a practical note, our analysis highlighted the need to deal simultaneously with the

two limits ∆t → 0 and T → ∞ when using the discrete QR algorithm. The relation (2.17)

that we used to couple the two parameters may also be of use in more realistic simulations.

In the general case where a convergence bound of the form (2.18) is not available, it would

be possible to monitor convergence as ∆t decreases, and hence adaptively refine the value of

α in order to balance the errors.

There is much scope for further theoretical work in this area, including (a) fully analysing

the case of complex conjugate eigenvalues and (b) extending the rigorous analysis to more

general problem classes, such as the Floquet case [4, pages 412–413]. Given the importance

of Lyapunov exponent computations in quantifying the dynamics of long-term simulations, it

is clearly of interest to develop tools for analysing and comparing numerical methods, even

on simple test problems.

Acknowledgements. We thank Pete Stewart for explaining to us how Lemma 3.2 follows

from the traditional subspace convergence result, and thereby allowing us to shorten our

original proof.
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