Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Error analysis of QR algorithms for computing Lyapunov exponents

McDonald, E.J. and Higham, D.J. (2001) Error analysis of QR algorithms for computing Lyapunov exponents. Electronic Transactions on Numerical Analysis, 12. pp. 234-251. ISSN 1068-9613

[img]
Preview
Text (strathprints000173)
strathprints000173.pdf - Accepted Author Manuscript

Download (361kB) | Preview

Abstract

Lyapunov exponents give valuable information about long term dynamics. The discrete and continuous QR algorithms are widely used numerical techniques for computing approximate Lyapunov exponents, although they are not yet supported by a general error analysis. Here, a rigorous convergence theory is developed for both the discrete and continuous QR algorithm applied to a constant coefficient linear system with real distinct eigenvalues. For the discrete QR algorithm, the problem essentially reduces to one of linear algebra for which the timestepping and linear algebra errors uncouple and precise convergence rates are obtained. For the continuous QR algorithm, the stability, rather than the local accuracy, of the timestepping algorithm is relevant, and hence the overall convergence rate is independent of the stepsize. In this case it is vital to use a timestepping method that preserves orthogonality in the ODE system. We give numerical results to illustrate the analysis. Further numerical experiments and a heuristic argument suggest that the convergence properties carry through to the case of complex conjugate eigenvalue pairs.