Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Fluorescence-based glucose sensors

Pickup, J.C. and Hussain, Faeiza and Evans, Nicholas D. and Rolinski, O.J. and Birch, D.J.S. (2005) Fluorescence-based glucose sensors. Biosensors and Bioelectronics, 20 (12). pp. 2555-2565. ISSN 0956-5663

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

There is an urgent need to develop technology for continuous in vivo glucose monitoring in subjects with diabetes mellitus. Problems with existing devices based on electrochemistry have encouraged alternative approaches to glucose sensing in recent years, and those based on fluorescence intensity and lifetime have special advantages, including sensitivity and the potential for non-invasive measurement when near-infrared light is used. Several receptors have been employed to detect glucose in fluorescence sensors, and these include the lectin concanavalin A (Con A), enzymes such as glucose oxidase, glucose dehydrogenase and hexokinase/glucokinase, bacterial glucose-binding protein, and boronic acid derivatives (which bind the diols of sugars). Techniques include measuring changes in fluorescence resonance energy transfer (FRET) between a fluorescent donor and an acceptor either within a protein which undergoes glucose-induced changes in conformation or because of competitive displacement; measurement of glucose-induced changes in intrinsic fluorescence of enzymes (e.g. due to tryptophan residues in hexokinase) or extrinsic fluorophores (e.g. using environmentally sensitive fluorophores to signal protein conformation). Non-invasive glucose monitoring can be accomplished by measurement of cell autofluorescence due to NAD(P)H, and fluorescent markers of mitochondrial metabolism can signal changes in extracellular glucose concentration. Here we review the principles of operation, context and current status of the various approaches to fluorescence-based glucose sensing.

Item type: Article
ID code: 17291
Keywords: diabetes mellitus, biosensor, glucose monitoring, glucose sensor, fluorescence, non-invasive monitoring, fluorescence resonance energy transfer, Pathology, Physics, Biomedical Engineering, Electrochemistry, Biotechnology, Biophysics
Subjects: Medicine > Pathology
Science > Physics
Department: Faculty of Science > Physics
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 13 Apr 2010 16:27
    Last modified: 05 Sep 2014 01:27
    URI: http://strathprints.strath.ac.uk/id/eprint/17291

    Actions (login required)

    View Item