Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Culling and cattle controls influence tuberculosis risk for badgers

Woodroffe, R. and Donnelly, C.A. and Jenkins, H.E. and Johnston, W.T. and Cox, D.R. and Bourne, F.J. and Cheeseman, C.L. and Delahay, R.J. and Gettinby, G. (2006) Culling and cattle controls influence tuberculosis risk for badgers. Proceedings of the National Academy of Sciences, 103 (40). pp. 14713-14717. ISSN 0027-8424

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Human and livestock diseases can be difficult to control where infection persists in wildlife populations. In Britain, European badgers (Meles meles) are implicated in transmitting Mycobacterium bovis, the causative agent of bovine tuberculosis (TB), to cattle. Badger culling has therefore been a component of British TB control policy for many years. However, large-scale field trials have recently shown that badger culling has the capacity to cause both increases and decreases in cattle TB incidence. Here, we show that repeated badger culling in the same area is associated with increasing prevalence of M. bovis infection in badgers, especially where landscape features allow badgers from neighboring land to recolonize culled areas. This impact on prevalence in badgers might reduce the beneficial effects of culling on cattle TB incidence, and could contribute to the detrimental effects that have been observed. Additionally, we show that suspension of cattle TB controls during a nationwide epidemic of foot and mouth disease, which substantially delayed removal of TB-affected cattle, was associated with a widespread increase in the prevalence of M. bovis infection in badgers. This pattern suggests that infection may be transmitted from cattle to badgers, as well as vice versa. Clearly, disease control measures aimed at either host species may have unintended consequences for transmission, both within and between species. Our findings highlight the need for policymakers to consider multiple transmission routes when managing multihost pathogens.