Picture of virus under microscope

Research under the microscope...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

Strathprints serves world leading Open Access research by the University of Strathclyde, including research by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), where research centres such as the Industrial Biotechnology Innovation Centre (IBioIC), the Cancer Research UK Formulation Unit, SeaBioTech and the Centre for Biophotonics are based.

Explore SIPBS research

A continuum model of the within-animal population dynamics of E-coli O157

Wood, J.C. and Speirs, D.C. and Naylor, S.W. and Gettinby, G. and McKendrick, I.J. (2006) A continuum model of the within-animal population dynamics of E-coli O157. Journal of Biological Systems, 14 (3). pp. 425-443. ISSN 0218-3390

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The high level of human morbidity caused by E. coli O157:H7 necessitates an improved understanding of the infection dynamics of this bacterium within the bovine reservoir. Until recently, a degree of uncertainty surrounded the issue of whether these bacteria colonize the bovine gut and as yet, only incomplete in-vivo datasets are available. Such data typically consist of bacterial counts from fecal samples. The development of a deterministic model, which has been devised to make good use of such data, is presented. A partial differential equation, which includes advection, diffusion and growth terms, is used to model the (unobserved) passage of bacteria through the bovine gut. A set of experimentally-obtained fecal count data is used to parameterize the model. Between-animal variability is found to be greater than between-strain variability, with some results adding further weight to the hypothesis that E. coli O157:H7 can colonize the bovine gastrointestinal tract.