Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

A continuum model of the within-animal population dynamics of E-coli O157

Wood, J.C. and Speirs, D.C. and Naylor, S.W. and Gettinby, G. and McKendrick, I.J. (2006) A continuum model of the within-animal population dynamics of E-coli O157. Journal of Biological Systems, 14 (3). pp. 425-443. ISSN 0218-3390

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The high level of human morbidity caused by E. coli O157:H7 necessitates an improved understanding of the infection dynamics of this bacterium within the bovine reservoir. Until recently, a degree of uncertainty surrounded the issue of whether these bacteria colonize the bovine gut and as yet, only incomplete in-vivo datasets are available. Such data typically consist of bacterial counts from fecal samples. The development of a deterministic model, which has been devised to make good use of such data, is presented. A partial differential equation, which includes advection, diffusion and growth terms, is used to model the (unobserved) passage of bacteria through the bovine gut. A set of experimentally-obtained fecal count data is used to parameterize the model. Between-animal variability is found to be greater than between-strain variability, with some results adding further weight to the hypothesis that E. coli O157:H7 can colonize the bovine gastrointestinal tract.