Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

An investigation of the effect of ti, pd and zr on the dehydriding kinetics of mgh2

Berlouis, L.E.A. and Honnor, P. and Hall, P.J. and Morris, S. and Dodd, S.B. (2006) An investigation of the effect of ti, pd and zr on the dehydriding kinetics of mgh2. Journal of Materials Science, 41 (19). pp. 6403-6408. ISSN 0022-2461

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The effect of additives Ti, Pd and Zr on the rate of hydrogen desorption from MgH2 is investigated using high-pressure differential scanning calorimetry. Van't Hoff analysis as well as X-ray powder diffraction measurements confirm that no new intermetallic phases are formed in these systems but enhanced dehydriding kinetics are obtained in the presence of Pd and Zr. For the Mg-Zr composite, Zr precipitates are formed throughout the material on heating to 500 °C but these do not grow with further thermal cycling. The desorption rate for all the composites was found to increase with temperature as well as pressure difference between experimental and equilibrium pressures. A value of 114 ± 4 kJ mol−1 was obtained for the activation energy for dehydriding of the Mg-Ti-Pd composite. The effect of additives Ti, Pd and Zr on the rate of hydrogen desorption from MgH2 is investigated using high-pressure differential scanning calorimetry. Van't Hoff analysis as well as X-ray powder diffraction measurements confirm that no new intermetallic phases are formed in these systems but enhanced dehydriding kinetics are obtained in the presence of Pd and Zr. For the Mg-Zr composite, Zr precipitates are formed throughout the material on heating to 500 °C but these do not grow with further thermal cycling. The desorption rate for all the composites was found to increase with temperature as well as pressure difference between experimental and equilibrium pressures. A value of 114 ± 4 kJ mol−1 was obtained for the activation energy for dehydriding of the Mg-Ti-Pd composite.

Item type: Article
ID code: 17212
Keywords: hydriding properties, magnesium hydride, hydrogen storage, alloys, Chemical engineering, Mechanics of Materials, Materials Science(all), Mechanical Engineering
Subjects: Technology > Chemical engineering
Department: Faculty of Engineering > Chemical and Process Engineering
Faculty of Science > Pure and Applied Chemistry
Related URLs:
    Depositing user: Strathprints Administrator
    Date Deposited: 06 Apr 2010 15:02
    Last modified: 05 Sep 2014 01:32
    URI: http://strathprints.strath.ac.uk/id/eprint/17212

    Actions (login required)

    View Item