Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Strong convergence of Euler-type methods for nonlinear stochastic differential equations

Higham, D.J. and Mao, X. and Stuart, A.M. (2002) Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis, 40 (3). pp. 1041-1063. ISSN 0036-1429

Full text not available in this repository. (Request a copy from the Strathclyde author)


Traditional finite-time convergence theory for numerical methods applied to stochastic differential equations (SDEs) requires a global Lipschitz assumption on the drift and diffusion coefficients. In practice, many important SDE models satisfy only a local Lipschitz property and, since Brownian paths can make arbitrarily large excursions, the global Lipschitz-based theory is not directly relevant. In this work we prove strong convergence results under less restrictive conditions. First, we give a convergence result for Euler--Maruyama requiring only that the SDE is locally Lipschitz and that the pth moments of the exact and numerical solution are bounded for some p >2. As an application of this general theory we show that an implicit variant of Euler--Maruyama converges if the diffusion coefficient is globally Lipschitz, but the drift coefficient satisfies only a one-sided Lipschitz condition; this is achieved by showing that the implicit method has bounded moments and may be viewed as an Euler--Maruyama approximation to a perturbed SDE of the same form. Second, we show that the optimal rate of convergence can be recovered if the drift coefficient is also assumed to behave like a polynomial.