Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Apparent motion cues distort object localisation in egocentric space

Grealy, Madeleine and Coello, Y. and Heffernan, D. (2003) Apparent motion cues distort object localisation in egocentric space. Experimental Brain Research, 150 (3). pp. 356-362. ISSN 0014-4819

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The visual localisation of objects in space is thought to rely on retinal information defining the environmental context and non-retinal cues from proprioception and motor commands. Here, the influence of dynamic contextual cues on the perception of egocentric space in a reaching task was investigated. Compared to performances with realistic motion or static cues, target localisation was less accurate when apparent motion was used to provide contextual information about space between the hand and the target. This effect could not be explained by the 'presence' of motion, or a bias in depth perception. Since the distortion was connected with the reaching area it was concluded that cognitive factors can unconsciously influence the perception of egocentric space, in particular distance estimation. We propose a mechanism for this whereby signals from areas MT/MST (middle temporal/medial superior temporal) create a perceptual bias through cortico-cortical connections with posterior parietal cortex.