Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Photocatalytic oxidation of deposited sulfur and gaseous sulfur dioxide by TiO2 films

Mills, A. and Crow, M. and Wang, Jishun and Parkin, I.P. and Boscher, N. (2007) Photocatalytic oxidation of deposited sulfur and gaseous sulfur dioxide by TiO2 films. Journal of Physical Chemistry C, 111 (14). pp. 5520-5525.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Thick (4 μm) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, 2.8 μm, thick and under moderate illumination conditions (I = 5.6 mW cm-2) on the open bench the process is complete within 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is 0.16%, which is much higher (>15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.