Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

25-hydroxycholesterol, 7b-hydroxycholesterol and 7-ketocholesterol upregulate interleukin-8 expression independently of toll-like receptor 1, 2, 4 or 6 signalling in human macrophages

Erridge, Clett and Webb, David J. and Spickett, C.M. (2007) 25-hydroxycholesterol, 7b-hydroxycholesterol and 7-ketocholesterol upregulate interleukin-8 expression independently of toll-like receptor 1, 2, 4 or 6 signalling in human macrophages. Free Radical Research, 41 (3). pp. 260-266. ISSN 1071-5762

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not IκB degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.