Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Reversible, fluorescence-based optical sensor for hydrogen peroxide

Mills, A. and Tommons, Cheryl and Bailey, R.T. and Tedford, M.Catriona and Crilly, Peter J. (2007) Reversible, fluorescence-based optical sensor for hydrogen peroxide. Analyst, 132 (6). pp. 566-571. ISSN 0003-2654

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The preparation and characterisation are described of a robust, reversible, hydrogen peroxide optical sensor, based on the fluorescent quenching of the dye ion-pair [Ru(bpy)32+(Ph4B-)2], by O2 produced by the catalytic breakdown of H2O2, utilizing the inorganic catalyst RuO2·xH2O. The main feature of this system is the one-pot formulation of a coating ink that, when dried, forms an active single-layer fluorescence-based H2O2 sensor, demonstrably capable of detecting H2O2 over the range of 0.01 to 1 M, with a relative standard deviation of ca. 4% and a calculated lower limit of detection of 0.1 mM. These sensors are sterilisable, using dry-heat, and stable when stored over 40 days, without exhibiting any loss in sensitivity or response characteristics.