Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Some factors influencing exfoliation and physical property enhancement in nanoclay epoxy resins based on diglycidyl ethers of bisphenol A and F

Ingram, S.E. and Rhoney, I. and Liggat, J.J. and Hudson, N.E. and Pethrick, R.A. (2007) Some factors influencing exfoliation and physical property enhancement in nanoclay epoxy resins based on diglycidyl ethers of bisphenol A and F. Journal of Applied Polymer Science, 106 (1). pp. 5-19. ISSN 0021-8995

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An investigation of the factors influencing the degree of exfoliation of an organically modified clay in a series of epoxy resins is reported. The use of sonication, choice of curing agent, effect of the moisture content of the clay, and the cure temperature were examined. The dispersion was characterized using a combination of rheological measurements, X-ray diffraction, and dynamic mechanical thermal analysis. Rheological analysis of the clay dispersion in the epoxy monomer indicated that at high clay loads Herschel-Bulkley type behavior is followed. Higher cure temperatures and higher levels of clay moisture were found to influence the extent of exfoliation. Improvements in physical properties were observed through the addition of nanocomposites. The DGEBA/DDM and DEGEBA/DDS exhibited 2 and 4°C increase, respectively, in Tg per wt % of added clay. DGEBF showed virtually no enhancement.