Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Thermal management in 2.3-mu m semiconductor disk lasers : a finite element analysis

Kemp, A. and Hopkins, J.M. and MacLean, A.J. and Schulz, N. and Rattunde, M. and Wagner, J. and Burns, D. (2008) Thermal management in 2.3-mu m semiconductor disk lasers : a finite element analysis. IEEE Journal of Quantum Electronics, 44 (1-2). pp. 125-135. ISSN 0018-9197

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Finite element analysis is used to study heat flow in a 2.3-mum semiconductor disk laser (or vertical-external-cavity surface-emitting laser) based on GalnAsSb-AlGaAsSb. An intra-cavity diamond heatspreader is shown to significantly improve thermal management-and hence power scalability-in this laser compared to the substrate thinning approach typically used in semiconductor disk lasers operating around 1 mum. The parameters affecting the performance of an intracavity heat-spreader are studied in the context of a 2.3-mum semiconductor disk laser: the thermal impedance at the interface between the semiconductor gain material and the heatspreader is found to be much more important than the mounting arrangements for the gain-heatspreader composite; power scaling with pump spot radius-increasing the pump power at constant pump intensity-is found to be intrinsically limited; and the pump wavelength is predicted to have less affect on thermal management than might be expected. Direct pumping of the quantum wells is found to significantly reduce the temperature rise per unit pump power.