Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Gev plasma accelerators driven in waveguides

Hooker, S.M. and Brunetti, E. and Esarey, E. and Gallacher, J.G. and Geddes, C.G.R. and Gonsalves, A.J. and Jaroszynski, D.A. and Kamperidis, C. (2007) Gev plasma accelerators driven in waveguides. Plasma Physics and Controlled Fusion, 49 (12B). B403-B410. ISSN 0741-3335

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

During the last few years laser-driven plasma accelerators have been shown to generate quasi-monoenergetic electron beams with energies up to several hundred MeV. Extending the output energy of laser-driven plasma accelerators to the GeV range requires operation at plasma densities an order of magnitude lower, i.e. 1018 cm−3, and increasing the distance over which acceleration is maintained from a few millimetres to a few tens of millimetres. One approach for achieving this is to guide the driving laser pulse in the plasma channel formed in a gas-filled capillary discharge waveguide. We present transverse interferometric measurements of the evolution of the plasma channel formed and compare these measurements with models of the capillary discharge. We describe in detail experiments performed at Lawrence Berkeley National Laboratory and at Rutherford Appleton Laboratory in which plasma accelerators were driven within this type of waveguide to generate quasi-monoenergetic electron beams with energies up to 1 GeV.