Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Gev plasma accelerators driven in waveguides

Hooker, S.M. and Brunetti, E. and Esarey, E. and Gallacher, J.G. and Geddes, C.G.R. and Gonsalves, A.J. and Jaroszynski, D.A. and Kamperidis, C. (2007) Gev plasma accelerators driven in waveguides. Plasma Physics and Controlled Fusion, 49 (12B). B403-B410. ISSN 0741-3335

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

During the last few years laser-driven plasma accelerators have been shown to generate quasi-monoenergetic electron beams with energies up to several hundred MeV. Extending the output energy of laser-driven plasma accelerators to the GeV range requires operation at plasma densities an order of magnitude lower, i.e. 1018 cm−3, and increasing the distance over which acceleration is maintained from a few millimetres to a few tens of millimetres. One approach for achieving this is to guide the driving laser pulse in the plasma channel formed in a gas-filled capillary discharge waveguide. We present transverse interferometric measurements of the evolution of the plasma channel formed and compare these measurements with models of the capillary discharge. We describe in detail experiments performed at Lawrence Berkeley National Laboratory and at Rutherford Appleton Laboratory in which plasma accelerators were driven within this type of waveguide to generate quasi-monoenergetic electron beams with energies up to 1 GeV.