Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis

Lewicki, J.P. and Liggat, J.J. and Pethrick, R.A. and Patel, M. and Rhoney, I. (2008) Investigating the ageing behavior of polysiloxane nanocomposites by degradative thermal analysis. Polymer Degradation and Stability, 93 (1). pp. 158-168. ISSN 0141-3910

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The ageing behavior of novel polysiloxane nanocomposite elastomers is reported. A series of model polysiloxane nanocomposites has been prepared incorporating the montmorillonite nanoclay Cloisite 6A. The nanoclay dispersion has been characterized with X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). TGA has been utilized to study the effects of ageing on the non-oxidative stability of the nanocomposite systems. The complex evolution of volatiles that occurs during ageing has been studied using Sub-Ambient Thermal Volatilization Analysis (SATVA). Results indicate that significant chemical changes take place within the nanocomposites upon ageing; acid catalyzed hydrolysis, chain backbiting and recombination reactions are re-structuring the polymer-filler network into a more thermodynamically stable form.