Strathprints Home | Open Access | Browse | Search | User area | Copyright | Help | Library Home | SUPrimo

Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise

Mattingly, J. and Stuart, A.M. and Higham, D.J. (2002) Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications, 101 (2). pp. 185-232. ISSN 0304-4149

[img]
Preview
PDF (strathprints000171.pdf)
Download (433Kb) | Preview

    Abstract

    The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces, such as that expounded by Meyn-Tweedie. Application of these Markov chain results leads to straightforward proofs of geometric ergodicity for a variety of SDEs, including problems with degenerate noise and for problems with locally Lipschitz vector fields. Applications where this theory can be usefully applied include damped-driven Hamiltonian problems (the Langevin equation), the Lorenz equation with degenerate noise and gradient systems. The same Markov chain theory is then used to study time-discrete approximations of these SDEs. The two primary ingredients for ergodicity are a minorization condition and a Lyapunov condition. It is shown that the minorization condition is robust under approximation. For globally Lipschitz vector fields this is also true of the Lyapunov condition. However in the locally Lipschitz case the Lyapunov condition fails for explicit methods such as Euler-Maruyama; for pathwise approximations it is, in general, only inherited by specially constructed implicit discretizations. Examples of such discretization based on backward Euler methods are given, and approximation of the Langevin equation studied in some detail.

    Item type: Article
    ID code: 171
    Keywords: geometric ergodicity, stochastic equations, Langevin equation, gradient systems, additive noise, time-discretization, computer science, applied mathematics, Electronic computers. Computer science, Mathematics
    Subjects: Science > Mathematics > Electronic computers. Computer science
    Science > Mathematics
    Department: Faculty of Science > Mathematics and Statistics
    Related URLs:
      Depositing user: Ms Sarah Scott
      Date Deposited: 03 Mar 2006
      Last modified: 12 Mar 2012 22:02
      URI: http://strathprints.strath.ac.uk/id/eprint/171

      Actions (login required)

      View Item

      Fulltext Downloads: