Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator

Jaroszynski, D.A. and Brunetti, E. and Wiggins, Mark and Budde, F. and Jackel, O. and Pfotenhauer, S. and Schwoerer, H. and Rohwer, E. (2008) A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nature Physics, 4 (2). pp. 130-133. ISSN 1745-2473

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ultrashort light pulses are powerful tools for time-resolved studies of molecular and atomic dynamics1. They arise in the visible and infrared range from femtosecond lasers2, and at shorter wavelengths, in the ultraviolet and X-ray range, from synchrotron sources3 and free-electron lasers4. Recent progress in laser wakefield accelerators has resulted in electron beams with energies from tens of mega-electron volts (refs 5,6,7) to more than 1 GeV within a few centimetres8, with pulse durations predicted to be several femtoseconds9. The enormous progress in improving beam quality and stability5, 6, 7, 8, 10 makes them serious candidates for driving the next generation of ultracompact light sources11. Here, we demonstrate the first successful combination of a laser-plasma wakefield accelerator, producing 55-75 MeV electron bunches, with an undulator to generate visible synchrotron radiation. By demonstrating the wavelength scaling with energy, and narrow-bandwidth spectra, we show the potential for ultracompact and versatile laser-based radiation sources from the infrared to X-ray energies. (Abstract from: http://www.nature.com/nphys/journal/v4/n2/abs/nphys811.html)