Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Quantum path contribution to high-order harmonic spectra

Brunetti, E. and Issac, R. and Jaroszynski, D.A. (2008) Quantum path contribution to high-order harmonic spectra. Physical Review A, 77 (2). 023422-1-023422-6. ISSN 1094-1622

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Ultrashort pulses of uv and soft x-ray radiation with durations ranging from femtoseconds to attoseconds can be produced as high-order harmonics of the fundamental frequency of a laser beam focused into gas. Applications to fields such as spectroscopy and attosecond metrology require the control and characterization of spectral and spatial properties of the emitted radiation. These are determined by both single atom and macroscopic response of the interaction medium to the laser field. Here we present evidence that microscopic effects have a larger influence than previously thought, and can induce a splitting and a frequency shift of the harmonic lines. These results not only offer a direct diagnostic for high-order harmonic generation, but also enable us to better tune the parameters of the produced radiation, while giving a deeper insight into the fundamental physics underlying this nonlinear optical process. © 2008 The American Physical Society