Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Surface-enhanced raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum

Stokes, R.J. and McBride, E. and Wilson, C.G. and Girkin, J.M. and Smith, W.E. and Graham, D. (2008) Surface-enhanced raman scattering spectroscopy as a sensitive and selective technique for the detection of folic acid in water and human serum. Applied Spectroscopy, 62 (4). pp. 371-376. ISSN 0003-7028

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Surface-enhanced Raman scattering (SERS) is shown to give linear and sensitive concentration-dependent detection of folic acid using silver nanoparticles created via ethylene-diaminetetraacetic acid (EDTA) reduction. Optical detection by SERS overcomes the primary limitation of photodissociation encountered during the application of other shorter wavelength ultraviolet (UV)/near-UV techniques such as fluorescence based microscopy. The SERS approach in water-based samples was demonstrated and optimized using several longer wavelengths of excitation (514.5, 632.8, and 785 nm). Excitation in the green (514.5 nm) was found to achieve the best balance between photodissociation and SERS efficiency. Linear concentration dependence was observed in the range of 0.018 to 1 lM. The importance of folic acid in a clinical setting and the potential applications of this technique in a biological environment are highlighted. We demonstrate the potential to transfer this technique to real biological samples by the detection of folic acid in human serum samples by SERS. (Abstract from : http://www.opticsinfobase.org/as/abstract.cfm?uri=as-62-4-371)