Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The stability of polysiloxanes incorporating nano-scale physical property modifiers

Lewicki, J.P. and Patel, M. and Morrell, P. and Liggat, J.J. and Murphy, J. and Pethrick, R.A. (2008) The stability of polysiloxanes incorporating nano-scale physical property modifiers. Science and Technology of Advanced Materials, 9 (2). 024403-024411. ISSN 1468-6996

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Reported here is the synthesis and subsequent characterization of the physical and chemical properties of novel polysiloxane elastomers modified with a series of polyhedraloligomericsilsequioxane (POSS) molecular silicas. The physical properties of the formulated nanocomposite systems have been characterized with a combination of dynamic mechanical analysis (DMA), broadband dielectric spectroscopy (BDS) and confocal Raman microscopy. The results of the physical property characterization demonstrate that the incorporation of low levels (1-4% by wt.) of POSS particles into the polysiloxane network leads to significant improvements in the mechanical properties of the elastomer and significantly alters the motional chain dynamics of the system as a whole. The results of studies performed to assess the long-term stability of these novel nanocomposite systems have demonstrated that POSS physical property modifiers can significantly alter the thermal stability of polysiloxane elastomers. Physically dispersed POSS has also been shown in some cases to be both mobile and disruptive within the polysiloxane networks, agglomerating into domains on a micron scale and migrating to the surface of the elastomers. This work demonstrates both the potential of POSS nanoparticles as physical property modifiers and describes the effects of POSS on the physical and chemical stability of polysiloxane systems.