Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Mass spectrometric analysis of hocl- and free-radical-induced damage to lipids and proteins

Pitt, A.R. and Spickett, C.M. (2008) Mass spectrometric analysis of hocl- and free-radical-induced damage to lipids and proteins. Biochemical Society Transactions, 36 (5). pp. 1077-1082. ISSN 0300-5127

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

In inflammatory diseases, release of oxidants leads to oxidative damage to biomolecules. HOCl (hypochlorous acid), released by the myeloperoxidase/H2O2/Cl− system, can cause formation of phospholipid chlorohydrins, or α-chloro-fatty aldehydes from plasmalogens. It can attack several amino acid residues in proteins, causing post-translational oxidative modifications of proteins, but the formation of 3-chlorotyrosine is one of the most stable markers of HOCl-induced damage. Soft-ionization MS has proved invaluable for detecting the occurrence of oxidative modifications to both phospholipids and proteins, and characterizing the products generated by HOCl-induced attack. For both phospholipids and proteins, the application of advanced mass spectrometric methods such as product or precursor ion scanning and neutral loss analysis can yield information both about the specific nature of the oxidative modification and the biomolecule modified. The ideal is to be able to apply these methods to complex biological or clinical samples, to determine the site-specific modifications of particular cellular components. This is important for understanding disease mechanisms and offers potential for development of novel biomarkers of inflammatory diseases. In the present paper, we review some of the progress that has been made towards this goal. (Abstract copied from Biochemical Society web site: http://www.biochemsoctrans.org/bst/036/bst0361077.htm)