Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Improved biocompatibility of protein encapsulation in sol-gel materials

Macmillan, A.M. and Panek, D. and McGuinness, C.D. and Pickup, J.C. and Graham, D. and Smith, W.E. and Birch, D.J.S. and Karolin, J. (2009) Improved biocompatibility of protein encapsulation in sol-gel materials. Journal of Sol-Gel Science and Technology, 49 (3). pp. 380-384. ISSN 0928-0707

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

By using the fluorescent dye 6-propionyl-2-(N,N-dimethylamino) naphthalene (PRODAN) to monitor methanol generated during tetramethyl orthosilicate polymerization we have optimised the encapsulation of protein in silica sol-gel monoliths with respect to completion of hydrolysis and distillation in order to remove methanol such that protein can be added without denaturation. A minimum of 24 h at +4 °C was found to be required before hydrolysis is complete and 3-5 min of vacuum distillation at 50 °C and 300 mbar needed to remove methanol before the gel is formed. The biocompatibility of a tetramethyl orthosilicate sol-gel monolith was demonstrated by preserving the trimer protein allophycocyanin (APC) in its native form for up to 500 h. This obviates the previously essential requirement of covalently binding the trimer together in order to prevent dissociation into monomers and has enabled observation of native APC trimer in a sol-gel pore for the first time down to the single molecule level using combined fluorescence spectroscopy and confocal microscopy. The higher stability afforded by the protocol we describe could impact on the application of sol-gel materials to single-molecule studies of wider bearing such as protein folding and aggregation.