Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

GAUGE: The GrAnd Unification and Gravity Explorer

Amelino-Camelia, G. and Aplin, K. and Arndt, M. and Barrow, J.D. and Bingham, Robert and Borde, C. and Bouyer, P. and Caldwell, M. and Lockerbie, N.A. and Pegrum, Colin (2009) GAUGE: The GrAnd Unification and Gravity Explorer. Experimental Astronomy, 23 (2). pp. 549-572. ISSN 0922-6435

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

The GAUGE (GrAnd Unification and Gravity Explorer) mission proposes to use a drag-free spacecraft platform onto which a number of experiments are attached. They are designed to address a number of key issues at the interface between gravity and unification with the other forces of nature. The equivalence principle is to be probed with both a high-precision test using classical macroscopic test bodies, and, to lower precision, using microscopic test bodies via cold-atom interferometry. These two equivalence principle tests will explore string-dilaton theories and the effect of space-time fluctuations respectively. The macroscopic test bodies will also be used for intermediate-range inverse-square law and an axion-like spin-coupling search. The microscopic test bodies offer the prospect of extending the range of tests to also include short-range inverse-square law and spin-coupling measurements as well as looking for evidence of quantum decoherence due to space-time fluctuations at the Planck scale.