Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS

Ingram, A.M. and Moore, B.D. and Graham, D. (2009) Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS. Bioorganic and Medicinal Chemistry Letters, 19 (6). pp. 1569-1571. ISSN 0960-894X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Surface enhanced resonance Raman scattering (SERRS) is an alternative to fluorescence for use in bioanalysis however due to the different optical mechanism it requires specifically designed reporters. Recently we have reported the use of 8-hydroxyquinolinyl azo dyes and their ester derivatives as reporters of lipase activity using SERRS. Acylation of the 8-hydroxy moiety significantly reduces surface enhancement of the Raman response and subsequent lipase catalysed ester hydrolysis enables the analyte to bind to silver nanoparticles, thus providing surface enhancement and the SERRS signal is 'switched on'. By following this principle, phosphorylated and galactosylated analogues of 8-hydroxyquinolinylazo dyes were prepared and shown to act as reporters of enzymatic activity for alkaline phosphatase and β-galactosidase respectively when using SERRS.