Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS

Ingram, A.M. and Moore, B.D. and Graham, D. (2009) Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS. Bioorganic and Medicinal Chemistry Letters, 19 (6). pp. 1569-1571. ISSN 0960-894X

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Surface enhanced resonance Raman scattering (SERRS) is an alternative to fluorescence for use in bioanalysis however due to the different optical mechanism it requires specifically designed reporters. Recently we have reported the use of 8-hydroxyquinolinyl azo dyes and their ester derivatives as reporters of lipase activity using SERRS. Acylation of the 8-hydroxy moiety significantly reduces surface enhancement of the Raman response and subsequent lipase catalysed ester hydrolysis enables the analyte to bind to silver nanoparticles, thus providing surface enhancement and the SERRS signal is 'switched on'. By following this principle, phosphorylated and galactosylated analogues of 8-hydroxyquinolinylazo dyes were prepared and shown to act as reporters of enzymatic activity for alkaline phosphatase and β-galactosidase respectively when using SERRS.