Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL)

Stothard, D.J.M. and Hopkins, J.M. and Burns, D. and Dunn, M.H. (2009) Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL). Optics Express, 17 (13). pp. 10648-10658. ISSN 1094-4087

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

We report relaxation oscillation free, true continuous-wave operation of a singly-resonant, intracavity optical parametric oscillator (OPO) based upon periodically-poled, MgO-doped LiNbO3 and pumped internal to the cavity of a compact, optically-excited semiconductor disk laser (or VECSEL). The very short upper-laser-state lifetime of this laser gain medium, coupled with the enhancing effect of the high-finesse pump laser cavity in which the OPO is located, enables a low threshold, high efficiency intracavity device to be operated free of relaxation oscillations in continuous-wave mode. By optimizing for low-power operation, parametric threshold was achieved at a diode-laser power of only 1.4W. At 8.5W of diode-laser power, 205mW of idler power was extracted, indicating a total down-converted power of 1.25W, and hence a down-conversion efficiency of 83%.