Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Production of powerful spatially coherent radiation in planar and coaxial fem exploiting two-dimensional distributed feedback

Arzhannikov, A.V. and Cross, A.W. and Ginzburg, N.S. and He, Wenlong and Kalinin, P.V. and Konoplev, I.V. and Kuznetsov, S.A. and Peskov, N.Y. and Phelps, A.D.R. and Robertson, C.W. and Ronald, K. and Whyte, C.G. (2009) Production of powerful spatially coherent radiation in planar and coaxial fem exploiting two-dimensional distributed feedback. IEEE Transactions on Plasma Science, 37 (9). pp. 1792-1800. ISSN 0093-3813

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Two-dimensional distributed feedback is an effective method of producing ultrahigh-power spatially coherent radiation from an active medium, that is spatially extended along two coordinates, including relativistic electron beams with sheet and annular geometry. This paper describes the progress in the investigations of planar and coaxial free-electron masers (FEMs) based on a novel feedback mechanism. The theoretical analysis of these FEM schemes was conducted in the frame of the coupled-wave approach and 3-D simulations and agrees well with the experimental data obtained in ldquocoldrdquo and ldquohotrdquo tests. As a result, the effective transverse (azimuthal) mode selection has been demonstrated under a transverse size of about 20-25 wavelengths, and narrow-frequency multimegawatt microwave pulses have been generated in the Ka- and W-bands.