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1 Introduction

The hybrid systems driven by continuous-time Markov chains have been used to model

many practical systems where they may experience abrupt changes in their structure

and parameters caused by phenomena such as component failures or repairs changing

subsystem interconnections, and abrupt environmental disturbances. For example, in his

book [8], Mariton explained that the hybrid systems had been emerging as a convenient

mathematical framework for the formulation of various design problems in different fields

such as evasive target tracking, fault tolerance detection, and manufacturing processes.

Recently, this hybrid approach had been extended to population dynamics (see e.g. [4, 12])

and the hybrid population systems are illustrated as a switching between two or more

regimes of environment, which differ by factors such as nutrition or as rain falls [1, 11].

One of the important classes of the hybrid systems is the stochastic differential delay

equation with Markovian switching (SDDEwMS)

dx(t) = f(x(t), x(t − τ), r(t))dt + g(x(t), x(t − τ), r(t))dB(t). (1.1)

Here the state vector has three components x(t), x(t− τ) and r(t): the first two ones are

in general referred to as the current and past states while the third one is regarded as

the mode. In its operation, the system switches from one mode to another in a random

way, and the switching between the modes is governed by a Markov chain. For details of

SDDEwMSs, the reader is referred to [7, 10] among others.

Our primary objective is to study the existence of the exact solutions to the SD-

DEwMS (1.1) and the convergence problem for the Euler-Maruyama (EM) approxima-

tions under some relax conditions. The existence theory of the exact solutions to the

SDDEwMS (1.1) has been studied quite well. In order to have a unique global (i.e. no

explosion in a finite time) solution for any given initial data, the coefficients of the equa-

tion are usually required to satisfy the local Lipschitz condition and the linear growth

condition (see e.g. [7]). Unfortunately, the linear growth condition is often not met by

many systems in practice. For example, consider the stochastic hybrid delay population

system

dx(t) = diag(x1(t), . . . , xn(t))[(b(r(t)) + A(r(t))x(t) + B(r(t))x(t − τ))dt + σ(r(t))dB(t)],

(1.2)
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where

x = (x1, · · · , xn)T ∈ R
n, b ∈ R

n, A ∈ R
n×n, B ∈ R

n×n, σ ∈ R
n×m

and B(t) is an m-dimensional Brownian motion. It is straightforward to see that the

linear growth condition is not satisfied by this system. It is in this spirit that Mao et

al. [6] have recently established a more general existence theory for the solution. In this

paper we will establish an alternative theorem on the existence and uniqueness of the

solution under the local Lipschitz condition plus a Lyapunov-type condition.

Moreover, most of the SDDEwMSs do not have explicit solutions whence the nu-

merical solutions are required. The classical convergence theory for numerical methods

to SDEs requires the coefficients of the equations to be globally Lipschitz, see [3], [5],

for example. Recently, Highham et al. [2] released the global Lipschitz condition but re-

quired the linear growth condition or the bounded pth moment property of both exact and

approximate solutions. These conditions are somehow still too restrictive, for example,

they are not satisfied by the population system (1.2). On the other hand, Marion et al.

[9] proved that the numerical solutions based on the Euler–Maruyama (EM) scheme will

converge to the true solutions for a broad class of SDEs without the linear growth condi-

tion nor the bounded pth moment property under some additional conditions in terms of

Lyapunov-type functions. All these results on numerical solutions are about SDEs and it

is non-trivial to develop them for the SDDEwMSs as they are more complicated.

In this paper we borrow the ideas from [6] and [9] and apply them to the SDDEwMS

(1.1). We will establish a new theorem on the existence and uniqueness of the solution

under the local Lipschitz condition plus a Lyapunov-type condition in section 3. Under

these conditions as well as the local Lipschitz continuity of the derivatives of the Lyapunov

function, we will then show the convergence in probability of the EM solutions to the exact

solution in section 4. Finally, we will apply our new results to study the population system

(1.2) in section 5.

2 Notations

Throughout this paper, we will use the following notations. We let (Ω, F , {Ft}t≥0, P)

be a complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions

(i.e. it is increasing and right continuous while F0 contains all P-null sets). Let B(t) =
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(B1(t), · · · , Bm(t))T be an m-dimensional Brownian motion defined on this probability

space. Let C(X, Y ) denote the family of all continuous mappings from the topological

space X to the topological space Y . Let τ > 0 and CFt
([−τ, 0]; Rn) be the family of all

Ft-measurable, C([−τ, 0]; Rn)-valued random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. Let

Cb
Ft

([−τ, 0]; Rn) denote the family of all bounded random variables ξ ∈ CFt
([−τ, 0]; Rn).

Also let L2
Ft

([−τ, 0]; Rn) denote the family of all random variables ξ ∈ CFt
([−τ, 0]; Rn)

such that

‖ξ‖2
E

:= sup
−τ≤θ≤0

E|ξ(θ)|2 < ∞.

Let r(t) be a right-continuous Markov chain on the probability space taking values

in a finite state space S = {1, 2, . . . , N} with the generator Γ = (γuv)N×N given by

P{r(t + δ) = v|r(t) = u} =







γuvδ + o(δ), if u 6= v,

1 + γuvδ + o(δ), if u = v,

where δ > 0. Here γuv is the transition rate from u to v and γuv ≥ 0 if u 6= v while

γuu = −
∑

v 6=u

γuv.

We assume that the Markov chain r(·) is independent of the Brownian motion B(·). Let

LFt
(Ω; S) denote the family of all Ft-measurable S-valued random variables.

Consider the stochastic differential delay equation with Markovian switching (SD-

DEwMS) of the form

dx(t) = f(x(t), x(t − τ), r(t))dt + g(x(t), x(t − τ), r(t))dB(t) (2.1)

on t ≥ 0 with initial data {x(t) : −τ ≤ t ≤ 0} = ξ ∈ CF0
([−τ, 0]; Rn), r(0) = r0 ∈

LF0
(Ω; S) and

f : R
n × R

n × S → R
n, g : R

n × R
n × S → R

n×m.

Moreover, let C2(Rn × S; R+) denote the family of all nonnegative functions V (x, i) on

R
n × S which are continuously twice differentiable in x. For each V ∈ C2(Rn × S; R+),

define an operator LV from R
n × R

n × S to R by

LV (x, y, i) = Vx(x, i)f(x, y, i)

+
1

2
trace[gT (x, y, i)Vxx(x, i)g(x, y, i)]

+
N

∑

j=1

γijV (x, j).
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where

Vx(x, i) =

(

∂V (x, i)

∂x1

, . . . ,
∂V (x, i)

∂xn

)

, Vxx(x, i) =

(

∂2V (x, i)

∂xi∂xj

)

n×n

.

Given a step size ∆ > 0, let X(t) be the continuous EM approximate solution to

the SDDEwMS (2.1). This was defined in [7] but we recall here its detailed definition.

First of all, let us explain how to simulate the discrete-time Markov chain {r∆
k }. Recall

the property of the embedded discrete-time Markov chain: Given a step size ∆ > 0, let

r∆
k = r(k∆) for ∆ > 0 and k ≥ 0. Then {r∆

k , k = 0, 1, 2, · · · } is a discrete-time Markov

chain with the one-step transition probability matrix

P(∆) = (Pij(∆))N×N = e∆Γ.

The discrete-time Markov chain {r∆
k , k = 0, 1, 2, · · · } can be simulated as follows: compute

the one-step transition probability matrix

P(∆) = (Pij(∆))N×N = e∆Γ.

Let r∆
0 = r0 and generate a random number ζ1 which is uniformly distributed in [0, 1]. If

ζ1 = 1 then let r∆
1 = r1 = N or otherwise find the unique integer r1 ∈ S for

r1−1
∑

j=1

Pr0,j(∆) ≤ ζ1 <

r1
∑

j=1

Pr0,j(∆)

and let r∆
1 = r1, where we set

0
∑

j=1

Pr0,j(∆) = 0 as usual. Generate independently a

new random number ζ2 which is again uniformly distributed in [0, 1]. If ζ2 = 1 then let

r∆
2 = r2 = N or otherwise find the unique integer r2 ∈ S for

r2−1
∑

j=1

Pr1,j(∆) ≤ ζ2 <

r2
∑

j=1

Pr1,j(∆)

and let r∆
2 = r2. Repeating this procedure a trajectory {r∆

k , k = 0, 1, 2, · · · } can be

generated. This procedure can be carried out independently to obtain more trajectories.

After explaining how to simulate the discrete-time Markov chain {r∆
k }, we can now

define the EM approximate solution to equation (2.1). To cope with the time lag, we

choose a step size ∆ > 0 to be a fraction of τ , whence k̄ := τ/∆ is a positive integer. Let

tk = k∆ for k ≥ −k̄. Set Xk = ξ(tk) for k = −k̄,−k̄ + 1, · · · , 0 and then compute the

discrete approximations Xk ≈ x(tk) for k ≥ 1 by

Xk+1 = Xk + f(Xk, Xk−k̄, r
∆
k )∆ + g(Xk, Xk−k̄, r

∆
k )∆Bk, (2.2)
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where ∆Bk = B(tk+1) − B(tk). Let

r̄(t) = r∆
k for t ∈ [tk, tk+1), k ≥ 0

and

X̄(t) = Xk for t ∈ [tk, tk+1), k ≥ −k̄.

Define the continuous EM approximate solution by setting X(t) = ξ(t) for t ∈ [−τ, 0] and

forming

X(t) = X0 +

∫ t

0

f(X̄(s), X̄(s − τ), r̄(s))ds +

∫ t

0

g(X̄(s), X̄(s − τ), r̄(s))dB(s) (2.3)

for t ≥ 0. Note that X(tk) = X̄(tk) = Xk for k ≥ −k̄, that is X(t) and X̄(t) coincide

with the discrete solution at the grid-points.

Before we close this section, let us impose the following hypotheses:

Assumption 1 Assume that both f and g satisfy the local Lipschitz condition. That is

for each R > 0 there is an LR > 0 such that

|f(x1, y1, i) − f(x2, y2, i)| ∨ |g(x1, y1, i) − g(x2, y2, i)| ≤ LR(|x1 − x2| + |y1 − y2|) (2.4)

for all i ∈ S and those x1, x2, y1, y2 ∈ R
n with |x1| ∨ |x2| ∨ |y1| ∨ |y2| ≤ R.

Assumption 2 Assume also there is a positive constant K such that the initial data ξ

obeys

E|ξ(u) − ξ(v)|2 ≤ K|u − v|, − τ ≤ u < v ≤ 0. (2.5)

3 Exact Solution

Let us begin with a result on the existence of the unique global solutions under the local

Lipschitz condition and some additional conditions in terms of Lyapunov-type functions.

Theorem 3.1 Let Assumption 1 hold. Assume that there exists a function V ∈ C2(Rn ×

S; R+), a constant h > 0 and H ∈ C(Rn; R+) such that

lim
|x|→∞

V (x, i) = ∞, ∀i ∈ S, (3.1)
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LV (x, y, i) ≤ h

(

1 + V (x, i) + min
j∈S

V (y, j)

)

− H(x) + H(y), ∀(x, y, i) ∈ R
n × R

n × S.

(3.2)

Assume furthermore that the initial data ξ obeys that

EV (ξ(0), r0) < ∞, sup
−τ≤t≤0

E

[

min
j∈S

V (ξ(t), j)

]

< ∞, sup
−τ≤t≤0

EH(ξ(t)) < ∞. (3.3)

Then there exists a unique global solution x(t) to the SDDEwMS (2.1) on [−τ,∞).

Proof. Assumption 1 guarantees the existence of the unique maximal local solution x(t)

on [−τ, σ∞), where σ∞ is the explosion time. We need to show σ∞ = ∞ a.s. If this

statement is false, there is a pair of constants T > 0 and ǫ ∈ (0, 1) such that

P{σ∞ ≤ T} > ǫ.

For each integer k ≥ 1, define the stopping time

σk = inf{t ∈ [0, σ∞) : |x(t)| ≥ k}. (3.4)

Since σk ≤ σ∞, we have

P{σk ≤ T} > ǫ, ∀k ≥ 1. (3.5)

Define

U(y) = min
j∈S

V (y, j), ∀y ∈ R
n. (3.6)

For any k ≥ 1 and 0 ≤ t ≤ T , by the generalized Itô formula and condition (3.2), we

compute

E[V (x(t ∧ σk), r(t ∧ σk))] ≤ EV (ξ(0), r0) + hE

∫ t∧σk

0

(1 + V (x(s), r(s)) + U(x(s − τ)))ds

− E

∫ t∧σk

0

(H(x(s)) − H(x(s − τ))))ds

≤ β + 2h

∫ t

0

EV (x(s ∧ σk), r(s ∧ σk))ds

≤ β + 2h

∫ t

0

(

sup
0≤u≤s

EV (x(u ∧ σk), r(u ∧ σk))

)

ds, (3.7)

where

β = EV (ξ(0), r0) + hT + hτ sup
−τ≤t≤0

EU(ξ(t)) + τ sup
−τ≤t≤0

EH(ξ(t)). (3.8)
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Since the right-hand-term is increasing in t, we must have

sup
0≤u≤t

E[V (x(u ∧ σk), r(t ∧ σk))] ≤ β + 2h

∫ t

0

(

sup
0≤u≤s

EV (x(u ∧ σk), r(u ∧ σk))

)

ds.

The Gronwall inequality implies

sup
0≤u≤T

E[V (x(u ∧ σk), r(t ∧ σk))] ≤ βe2hT . (3.9)

This implies

E[I{σk≤T}V (x(σk), r(σk))] ≤ βe2hT . (3.10)

On the other hand, if we define

vk = inf{V (x, i) : |x| ≥ k, i ∈ S}.

By (3.1), vk → ∞ as k → ∞. It now follows from (3.5) and (3.9) that

βe2hT ≥ vkP{σk ≤ T} ≥ ǫvk. (3.11)

Letting k → ∞ yields a contradiction so we must have σ∞ = ∞ a.s. 2

In many practical systems, especially, population systems, we require the existence

of the positive global solutions. For this purpose, we define the positive cone R
n
+ = {x ∈

R
n : xi > 0, 1 ≤ i ≤ n}. Accordingly, we have the following theorem.

Theorem 3.2 Let Assumption 1 hold. Assume that there exists a function V ∈ C2(Rn
+×

S; R+), a constant h > 0 and H ∈ C(Rn
+; R+) such that

lim
xj→0+

V (x, i) = ∞, lim
xj→∞

V (x, i) = ∞, ∀i ∈ S, j = 1, · · · , n. (3.12)

LV (x, y, i) ≤ h

(

1 + V (x, i) + min
j∈S

V (y, j)

)

− H(x) + H(y) ∀(x, y, i) ∈ R
n
+ × R

n
+ × S.

(3.13)

Assume furthermore that the initial data ξ ∈ CF0
([−τ, 0]; Rn

+) obeys that

EV (ξ(0), r0) < ∞, sup
−τ≤t≤0

E

[

min
j∈S

V (ξ(t), j)

]

< ∞, sup
−τ≤t≤0

EH(ξ(t)) < ∞. (3.14)

Then there exists a unique global solution x(t) to the SDDEwMS (2.1) on [−τ,∞) and

the solution has the property that x(t) ∈ R
n
+ a.s. for all t ∈ [−τ,∞).

Proof. Replacing the definition of stopping time σk in the proof of Theorem 3.1 by

σk = inf{t ∈ [0, σ∞) : xj(t) ∈ (1/k, k) for some j = 1, · · · , n}, (3.15)

we can show the theorem in the same way as Theorem 3.1 was proved. 2
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4 Approximate Solutions

Theorem 3.1 gives a very general result on the existence of the unique global solution under

the local local Lipschitz condition plus a Lyapunov-type condition. Let us now begin to

discuss the EM approximate solutions. The following theorem describes the convergence

in probability of the EM solutions to the exact solution under some additional conditions,

namely the Lipschtiz condition on the initial data and the local Lipschitz condition on

the derivatives of the Lyapunov function.

Theorem 4.1 Let all the assumptions of Theorem 3.1 and Assumption 2 hold. Also

assume that for each R > 0 there exists a positive constant KR such that for all i ∈ S and

those x1, x2 ∈ R
n with |x1| ∨ |x2| ≤ R,

|V (x1, i)−V (x2, i)| ∨ |Vx(x1, i)−Vx(x2, i)| ∨ |Vxx(x1, i)−Vxx(x2, i)| ≤ KR|x1 −x2|. (4.1)

Then for the given initial data ξ ∈ L2
F0

([−τ, 0]; Rn) satisfying (3.3), the exact solution x(t)

and the EM approximate solution X(t) to the SDDEwMS (2.1) have the property that

lim
∆→0

(

sup
0≤t≤T

|X(t) − x(t)|2
)

= 0 in probability, for any T > 0. (4.2)

Proof. The proof is rather technical and we divide it into three steps.

Step 1. Fix any T > 0. For a sufficiently large R > 0, define the stopping time

θ = T ∧ inf{t ∈ [0, T ] : |x(t)| ≥ R}.

Theorem 3.1 tells us that there exists a unique global exact solution x(t) to equation (2.1)

on [−τ,∞). So

lim
R→∞

P(θ < T ) = 0. (4.3)

Step 2. Let

vR = inf{V (x, i) : |x| ≥ R, i ∈ S}.

For the sufficiently large R define the stopping time

ρ = T ∧ inf{t ∈ [0, T ] : |X(t)| ≥ R}.
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Using (2.3) and applying the generalized Itô formula to V (X(t), r(t)) yields

E[V (X(ρ ∧ t), r(ρ ∧ t))] = EV (ξ(0), r0)

+ E

∫ ρ∧t

0

[

Vx(X(s), r(s))f(X̄(s), X̄(s − τ), r̄(s))

+
1

2
trace[gT (X̄(s), X̄(s − τ), r̄(s))Vxx(X(s), r(s))g(X̄(s), X̄(s − τ), r̄(s))]

+
N

∑

j=1

γr(s)jV (X(s), j)
]

ds.

In the same way as (3.7) was proved, we can show that

EV (ξ(0), r0) + E

∫ ρ∧t

0

LV (X̄(s), r̄(s))ds ≤ β + 2hE

∫ ρ∧t

0

V (X̄(s), r̄(s))ds, (4.4)

where β is defined by (3.8). Together with (3.2), rearranging the terms on the right-hand

side by plus-and-minus technique, we obtain that

E[V (X(ρ ∧ t), r(ρ ∧ t))]

≤ β + 2hE

∫ ρ∧t

0

V (X(s), r(s))ds

+ 2hE

∫ ρ∧t

0

[V (X̄(s), r̄(s)) − V (X(s), r̄(s))]ds

+ 2hE

∫ ρ∧t

0

[V (X(s), r̄(s)) − V (X(s), r(s))]ds

+ E

∫ ρ∧t

0

|Vx(X(s), r(s)) − Vx(X̄(s), r(s))||f(X̄(s), X̄(s − τ), r̄(s))|ds

+ E

∫ ρ∧t

0

|Vx(X̄(s), r(s)) − Vx(X̄(s), r̄(s))||f(X̄(s), X̄(s − τ), r̄(s))|ds

+
1

2
E

∫ ρ∧t

0

|Vxx(X(s), r(s)) − Vxx(X̄(s), r(s))||g(X̄(s), X̄(s − τ), r̄(s))|2ds

+
1

2
E

∫ ρ∧t

0

|Vxx(X̄(s), r(s)) − Vxx(X̄(s), r̄(s))||g(X̄(s), X̄(s − τ), r̄(s))|2ds

+ E

∫ ρ∧t

0

N
∑

j=1

|γr(s)j||V (X(s), j) − V (X̄(s), j)|ds

+ E

∫ ρ∧t

0

N
∑

j=1

|γr(s)j − γr̄(s)j||V (X̄(s), j)|ds. (4.5)
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By condition (4.1) we have

E

∫ ρ∧t

0

[V (X̄(s), r̄(s)) − V (X(s), r̄(s))]ds

≤E

∫ ρ∧t

0

KR|X̄(s) − X(s)|ds

≤KR

∫ T

0

E|X̄(ρ ∧ s) − X(ρ ∧ s)|ds

≤KR

∫ T

0

(

E|X̄(ρ ∧ s) − X(ρ ∧ s)|2
)

1

2

ds.

Let j = [ρ ∧ T/∆], the integer part of ρ ∧ T/∆. Then

E

∫ ρ∧t

0

[V (X(s), r̄(s)) − V (X(s), r(s))]ds

=

j
∑

k=0

E

∫ tk+1

tk

[V (X(s), r(tk)) − V (X(s), r(s))]ds (4.6)

with tj+1 being now set to be T . We derive that

E

∫ tk+1

tk

[V (X(s), r(tk)) − V (X(s), r(s))]ds

≤ E

∫ tk+1

tk

[V (X(s), r(tk)) − V (X(s), r(s))]I{r(s) 6=r(tk)}ds

≤ 2VRE

∫ tk+1

tk

I{r(s) 6=r(tk)}ds

= 2VR

∫ tk+1

tk

E
(

I{r(s) 6=r(tk)}|r(tk)
)

ds, (4.7)

where VR = max{V (x, i) : |x| ≤ R, i ∈ S} and in the last step we use the fact that

I{r(s) 6=r(tk)} is conditionally independent with respect to the σ-algebra generated by r(tk).

But, by the Markov property,

E
(

I{r(s) 6=r(tk)}|r(tk)
)

=
∑

i∈S

I{r(tk)=i}P (r(s) 6= i|r(tk) = i)

=
∑

i∈S

I{r(tk)=i}

∑

j 6=i

(γij(s − tk) + o(s − tk))

≤

(

max
1≤i≤N

(−γii)∆ + o(∆)

)

∑

i∈S

I{r(tk)=i}

≤ γ̄(∆ + o(∆)), (4.8)

where γ̄ = max1≤i≤N(−γii). So, inequalities (4.6)-(4.8) imply

E

∫ ρ∧t

0

[V (X(s), r̄(s)) − V (X(s), r(s))]ds ≤ 2VRT γ̄(∆ + o(∆)).
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We can similarly estimate the other terms on the right-hand side of (4.5) to get that

E[V (X(ρ ∧ t), r(ρ ∧ t))] ≤ β + 2hE

∫ ρ∧t

0

V (X(s), r(s))ds

+ C1(R)

∫ T

0

(

E|X̄(ρ ∧ s) − X(ρ ∧ s)|2
)

1

2

ds

+ C1(R)(∆ + o(∆)), (4.9)

where C1(R) and the following C2(R), C3(R), · · · are all constants dependent of R but

independent of ∆. But, for s ∈ [0, T ], let ks = [ρ ∧ s/∆], the integer part of ρ ∧ s/∆. It

follows from (2.3) and Assumption 1 easily that

E|X̄(ρ ∧ s) − X(ρ ∧ s)|2 ≤ C2(R)∆ ∀s ∈ [0, T ].

Substituting this into (4.9) yields that

E[V (X(ρ ∧ t), r(ρ ∧ t))] ≤ β + C3(R)(∆
1

2 + o(∆
1

2 )) + 2h

∫ t

0

EV (X(ρ ∧ s), r(ρ ∧ s))ds.

By the Gronwall inequality,

E[V (X(ρ ∧ T ), r(ρ ∧ T ))] ≤ e2hT
[

β + C3(R)(∆
1

2 + o(∆
1

2 ))
]

. (4.10)

In the same way as (3.11) was obtained, we can then show that

P (ρ < T ) ≤
e2hT

vR

[

β + C3(R)(∆
1

2 + o(∆
1

2 ))
]

. (4.11)

Step 3. Let τ = ρ ∧ θ. In the same way as Theorem 7.29 of [7] was proved we can

show that

E

[

sup
0≤t≤τ∧T

|X(t) − x(t)|2
]

≤ C4(R)(∆ + o(∆)). (4.12)

We would like to remark that Assumption 2 is used here. Now, let ε, δ ∈ (0, 1) be

arbitrarily small. Set

Ω̄ = {ω : sup
0≤t≤T

|X(t) − x(t)|2 ≥ δ}.

Using (4.12), we compute

δP(Ω̄ ∩ {τ ≥ T}) = δE
[

I{τ≥T}IΩ̄

]

≤ E

[

I{τ≥T} sup
0≤t≤τ∧T

|X(t) − x(t)|2
]

≤ E

[

sup
0≤t≤τ∧T

|X(t) − x(t)|2
]

≤ C4(R)(∆ + o(∆)).
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This, together with (4.11), yields that

P(Ω̄) ≤ P(Ω̄ ∩ {τ ≥ T}) + P(τ < T )

≤ P(Ω̄ ∩ {τ ≥ T}) + P(θ < T ) + P(ρ < T )

≤
C4(R)

δ
(∆ + o(∆)) + P(θ < T ) +

e2hT

vR

[

β + C3(R)(∆
1

2 + o(∆
1

2 ))
]

.

Recalling (4.3) and that vR → ∞ as R → ∞, we can choose R sufficiently large for

P(θ < T ) <
ε

3
,

βe2hT

vR

<
ε

3
,

and then choose ∆ sufficiently small for

C4(R)

δ
(∆ + o(∆)) +

e2hT

vR

C3(R)(∆
1

2 + o(∆
1

2 )) <
ε

3

to obtain

P
(

Ω̄
)

= P

(

sup
0≤t≤T

|X(t) − x(t)|2 ≥ δ

)

< ε.

This proves the assertion (4.2). 2

Similarly, we can show the EM approximate solutions will converge to the exact posi-

tive solution under the conditions of Theorem 3.2 along with Assumption 2 and condition

(4.1) which is of course restricted in the positive cone.

5 Application to the Stochastic Hybrid Delay Popu-

lation System

Let us now return to the stochastic hybrid delay population system (1.2). Clearly, the

coefficients satisfy Assumption 1. Yuan et al. [13] found a suitable Lyapunov function for

this system

V (x, i) =
n

∑

j=1

cm(i)(xj − 1 − ln(xj)), (x, i) ∈ R
n
+ × S,

for nN positive constants c1(i), · · · , cn(i) for i ∈ S. Obviously, this function satisfies

conditions (3.12) and (4.1) (restricted in the positive cone). Yuan et al. [13] imposed the

following assumption:

Assumption 3 Assume that there exist nN + 1 positive constants c1(i), · · · , cn(i) for

i ∈ S and θ such that

λ+
max

(

1

2
[C̄(i)A(i) + AT (i)C̄(i)] +

1

4θ
C(i)B(i)BT (i)C(i) + θI

)

≤ 0,

13



where C̄(i) = diag(c1(i), · · · , cn(i)) and I is the n × n identity matrix.

Under Assumption 3 the authors showed that there is a constant h > 0 such that

LV (x, y, i) ≤ h

(

1 + V (x, i) + min
j∈S

V (y, j)

)

− θ|x|2 + θ|y|2, ∀(x, y, i) ∈ R
n
+ × R

n
+ × S.

Therefore, Theorem 3.2 shows that for any initial data ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) =

r0 ∈ LF0
(Ω; S), there is a unique global solution x(t) ∈ R

n
+ to equation (1.2) on t ∈

[−τ,∞). Moreover, the EM scheme will converge to the true solution x(t) in the sense of

Theorem 4.1. So we could make extensive use of simulations of (1.2) to confirm analytic

results and to explore model behaviour.
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