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Abstract. In most studies of the capacity of quantum channels, it is assumed

that the errors in the use of each channel are independent. However, recent work

has begun to investigate the effects of memory or correlations in the error, and

has led to suggestions that there can be interesting non-analytic behaviour in

the capacity of such channels. In a previous paper, we pursued this issue by

connecting the study of channel capacities under correlated error to the study

of critical behaviour in many-body physics. This connection enables the use of

techniques from many-body physics to either completely solve or understand

qualitatively a number of interesting models of correlated error with analogous

behaviour to associated many-body systems. However, in order for this approach

to work rigorously, there are a number of technical properties that need to be

established for the lattice systems being considered. In this paper, we discuss

these properties in detail, and establish them for some classes of many-body

system.
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1. Introduction

One of the most important problems of quantum information theory is to try to determine the

channel capacity of noisy quantum channels. In a typical scenario, Alice would like to send

Bob information over many uses of a noisy quantum communication link. As the channel is

noisy, this cannot usually be done perfectly, and so they must use some form of block encoding

to combat errors. The channel capacity is defined as the optimal rate at which information

may be transferred with vanishing error in the limit of a large number of channel uses. There

are a variety of different capacities, depending upon whether Alice and Bob are interested in

transmitting classical or quantum information, and whether they have extra resources such as

prior entanglement. In this paper, we will be concerned mostly with the capacity for sending

quantum information, and so whenever we write the term ‘channel capacity’, we will implicitly

be referring to the quantum channel capacity.

In most work on these problems, it has usually been assumed that the noisy channel

acts independently and identically for each channel use. In this situation, the transformation

En corresponding to n-uses of the channel may be written as an n-fold tensor product of the

single-use channel E1:

En = E1 ⊗ E1 ⊗ · · · ⊗ E1. (1)



However, in real physical situations there may be correlations in the noise that acts between

successive uses, an interesting example being the decoherence of photons in optical fibres under

the action of varying birefringence, which can be correlated due to mechanical motion or slow

temperature fluctuations [1]. In such situations, one cannot describe the action of the channel in

a simple tensor product form:

En 6= E1 ⊗ E1 ⊗ · · · ⊗ E1. (2)

In this setting, one must really describe the action of the channel by a family of quantum

operations corresponding to each number of uses of the channel n = 1, 2, . . . , ∞:

{En}n. (3)

We will call any such family of operations a memory channel or a correlated channel4. Defining

the notion of channel capacity for such a correlated channel is not always straightforward.

In principle, a family of channels, such as equation (3) may not have any sensible limiting

behaviour as n → ∞5. However, in this paper, we will not need to discuss this issue in detail, as

we will only consider fairly regular channels that have a (unique) well-defined notion of channel

capacity.

In the case of uncorrelated errors, it has recently been shown [4] that the quantum channel

capacity of an uncorrelated quantum channel is given by:

Q(E)= lim
n→∞

I (E⊗n)

n
, (4)

where I (ξ) is the so-called coherent information of the quantum channel ξ :

I (ξ) := sup
ρ

S(ξ(ρ))− S(I ⊗ ξ(|ψ〉〈ψ |)), (5)

where S denotes the von Neumann entropy, ρ is a state, and |ψ〉〈ψ | is a purification of ρ.

Given that equation (4) is the quantum channel capacity for memoryless channels, it is

natural to hope that the corresponding expression:

Q({En}) := lim
n→∞

I (En)

n
(6)

will represent the quantum channel capacity in the case of correlated errors. However, this will

not always be the case, not least because this limit does not always exist ([2] and see footnote 5).

However, in this paper, we will not only assume that this limit exists, we will also initially work

under the assumption that it represents the true quantum channel capacity. We will later discuss

this assumption in some detail.

A similar situation occurs for the classical capacity of correlated quantum channels,

where formulae (4) and (6) can be replaced with similar expressions involving the Holevo

quantity instead of the coherent information. Most prior work on calculating the capacities of

correlated quantum channels has focused on the capacity for classical information. Numerical

4 The term ‘it correlated’ is sometimes more appropriate as we will also discuss the notion of correlated error in

channels with a two or three spatial dimensional structure, such as might arise in ‘egg box’ storage such as optical

lattices. In such cases ‘memory’ does not really have a meaning.
5 This point is discussed in detail in papers such as [2] and also in the literature on classical channels with memory

(see, e.g. the free online book [3]). It turns out that for all channels (not just uncorrelated ones), one may define an

optimistic and a pessimistic channel capacity. In the case of channels with uncorrelated error, and in ‘well-behaved’

correlated channels, these two notions coincide, giving the conventional definition of a channel capacity.



and mathematical experiments involving a small number of channel uses suggest that in a variety

of interesting cases the classical capacity of correlated channels can display interesting non-

analytic behaviour. For instance, the sequence of papers [5]–[7] investigates a certain family of

correlated channels parameterized by a memory factor µ ∈ [0, 1] which measures the degree of

correlations. The results of [5]–[7] demonstrate that when the correlated channel is refreshed

after every two uses (i.e. consider E2 ⊗ E2 ⊗ E2 ⊗ · · · , rather than the full correlated channel

{En}), then there is a certain transition value µ= µ0 at which the channel capacity displays

a definite kink, and above this threshold the optimal encoding states suddenly change from

product to highly entangled. Similar phenomena have subsequently been observed in a variety

of other cases [8, 9].

Despite these interesting observations, it is still an open question whether the sharp kinks

in the capacity of these models still persist if the full correlated channel {En} is considered

as n → ∞, or whether this behaviour is just an artefact of the truncation of the channel at

low n. The main difficulty in deciding such questions is that even under the assumption that

equations such as (6) (or its analogue for classical information—the regularized Holevo bound)

represent the true quantum capacity of a given correlated channel {En}, in most cases such

variational expressions are extremely difficult to compute. It is, however, interesting to note

that the non-analytic behaviour observed in the channel capacity of correlated channels is

somewhat reminiscent of the non-analyticity of physical observables that define a (quantum)

phase transition in strongly interacting (quantum) many-body systems, where in contrast true

phase transitions usually only occur in the n → ∞ limit.

Motivated by this heuristic similarity, in a previous paper [10], we connected the study of

channels with memory to the study of many-body physics. One advantage of this approach

is that allows the construction of a variety of interesting examples of channels for which

equation (6) can either be understood qualitatively or even calculated exactly using the

techniques of many-body physics. One would otherwise usually expect regularized equations

such as (6) to either be quite trivial or completely intractable. This is perhaps the most

important consequence of this line of attack—by relating correlated channels directly to many-

body physics, we obtain a good method for displaying models of channels with memory

that tread the interesting line between ‘solvability’ and ‘non-solvability’, in analogy with

the many such statistical physics models that have been proposed over the years. It is quite

possible that the insights of universality, scaling and renormalization that have been so

successful in many-body theory may provide valuable intuition for the study of channels with

correlated error.

Another advantage of this approach is its connection to physically realistic models of

correlated error. One can imagine that in many real forms of quantum memory, such as optical

lattices, any correlated errors might originate from interaction with a correlated environment

and thus be strongly related to models of statistical physics. This provides further physical

motivation to examine the properties of correlated channels with a many-body flavour.

The connection to many-body physics also naturally leads one to consider channels with

structure in two or more spatial dimensions. In such situations, it is no-longer appropriate to

think of correlations as ‘memory’, as the correlations arise not through a single time dimension,

but perhaps through spatial proximity in more than one dimension. In order to define a capacity

in such multidimensional situations, one would have to decide how to quantify the size of the

channel. Natural options could include the total number of particles in the system, or perhaps

the size of one linear dimension. Although we will not explicitly discuss multi-dimensional



Figure 1. Each particle that Alice sends to Bob interacts with a separate

environmental particle from a many-body system.

examples in this work, such situations might have interesting connections to the study of error

tolerance in computational devices.

This paper is structured as follows. In order to make the paper self-contained, in the sections

preceding section 7 we present, including all missing detail, the results of [10]. In section 6, we

discuss in detail some sufficient conditions that many-body systems must satisfy in order to

lead to capacity results according to the approach that we adopt—the arguments that lead to

the development of these conditions were sketched in [10], however, here, we provide the full

argument. In sections 8 and 9, we prove that these conditions hold for finitely correlated states

and formulate a Fannes-type inequality to show the same result for harmonic chains. In the

remaining sections, we discuss generalizations of our approach and present conclusions.

2. Many-body correlated channels

In this section, we recap the approach taken in [10] to construct correlated error models with

links to many-body physics. The starting point is to suppose, as usual, that Alice transmits a

sequence of particles to Bob (the ‘system’ particles), and that each particle interacts via a unitary

U with its own environmental particle. So far, this is exactly the same setting as uncorrelated

noise. However, although each system particle has its own separate environment, one can

introduce memory effects by asserting that the environment particles are in the thermal/ground

state of a many-body Hamiltonian, such that the interaction terms lead to correlations in the

environmental state (see figure 1). Unlike the uncorrelated case, this means that there will be

correlations in the noise on different system particles. At this point, it is important to discuss

some of the subtleties involved in the way that the ‘many-body’ system was defined in [10]. In

basic approaches to many-body physics, it is usual to consider a system with a finite number

of particles, obtain thermal states and ground states, and then take a limit as the number of

particles is taken to infinity. In more mathematical statistical physics literature [11], however,

it is usual to consider genuinely infinite systems from the start. This involves a number of

technical implications, including a very different approach to the concept of a state, which

can no longer be expressed in terms of basic density matrices. The two approaches are not

necessarily equivalent and may lead to different results. To avoid such technicalities in this



work, we will follow the former approach, and for each number of uses of the channel n,

we will consider a many-body system of size n. As a family of channels for each n this is a

mathematically well-defined object, and it is a reasonable question to ask what the resulting

channel capacity is. In later sections of the paper, we will also assume periodic boundary

conditions to enable us to analyse whether equation (16) is a valid quantum capacity or not.

Again, although this seems like an unnatural assertion, it is mathematically well-defined, and

in many systems the boundary conditions are believed to make a vanishingly small difference

which disappears in the large n limit.

Of course even with these simplifications not all many-body systems can be solved

exactly, or even understood qualitatively. Moreover, even if the many-body system can be well

understood, the computation of the limit (6) may still be difficult, and may depend strongly upon

the choice of the unitary U describing the interaction of each system particle with its associated

environmental particle. In order to provide concrete examples, one must hence make a judicious

choice of U in order to make analytical progress. As in [10], we choose U to be of the form

of a controlled–unitary interaction, where the environmental particles act as controls. In fact,

for ease of explanation we will also initially restrict the system and environment particles to be

two-level spins, and the interaction U to be a controlled-phase (‘CPHASE’) gate, which in the

computational basis for 2-qubits is defined as,

CPHASE =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1









. (7)

Later, we will discuss how higher-level analogues of the CPHASE enable similar connections

to many-body theories with constituent particles with a higher number of levels. The reason

we make these choices for the controlled unitary interactions is that explicit formulae may be

derived for the capacity in terms of relatively simple entropic expressions which are especially

amenable to analysis.

The restriction to controlled–unitary interactions also enables us to consider environment

particles that are classical. For instance, in the case of classical environment two-level spins, the

‘CPHASE’ interaction will be taken to mean that the system qubit undergoes a Pauli-Z rotation

when the environment spin is up, otherwise it is left alone. It turns out that by considering

classical environments it is possible to make more direct connections between the channel

capacity of our models and concepts from statistical physics.

So let us proceed in trying to understand the capacity in cases in which the system particles

are all two-level systems, with a CPHASE interaction. It is helpful to write the resulting channels

in a more explicit form. Let us consider a quantum environment first. Let |0〉 denote spin-down,

and |1〉 denote spin-up. Let us suppose that the environment consists of N spins (eventually we

will be interested in the limit N → ∞) initially in a state:
∑

x,y

ρx,y|x1x2 . . . xN 〉〈y1y2 . . . yN |, (8)

where the sum is taken over all N -bit strings x, y, and x j/y j denote the j th bit of strings

x/y, respectively. We can also describe a classical environment in the same way, simply

by restricting the input environment state ρ to be diagonal in the computational basis—the

CPHASE interaction will in this case leave the environment unchanged, and will affect the

system qubits as if the controls are entirely classical.



If the environment is in the state (8), and the system qubits are initially in the state σ , then

the channel acting upon the system qubits is given by:

σ →
∑

x

ρx,xZ
x1

1 Z
x2

2 . . . Z
xN
N σ(Z

x1

1 Z
x2

2 . . . Z
xN
N )

†, (9)

where Z i denotes the Pauli-Z operator acting upon qubit i . Hence, regardless of whether

the environment is considered quantum or classical, the channel that we have described is a

probabilistic application of Z -rotations on various qubits. Although we will consider qubit i to

be transmitted earlier in time than any other qubit j with i < j , there is no need for us to actually

impose such a time ordering—because all the CPHASE interactions commute with each other,

such time ordering is irrelevant6.

We will be interested in computing equation (6) for such many-body correlated channels.

In the next section, we will show that the channel capacity of this channel is given by a simple

function of the entropy of the diagonal elements in the spin-up/down basis of the environmental

state, i.e.

−
∑

x

ρx,x logρx,x. (10)

In the case of a classical environment, this is just the actual entropy of the spin-chain. This

observation is very useful, as it allows us to apply all the formalism of many-body physics to

the problem, also enabling us to use that intuition to observe a number of interesting effects. In

the quantum case this function does not correspond to a conventional thermodynamic property.

However, we will discuss examples where it is still amenable to a great deal of analysis using

many-body methods.

3. A formula for the coherent information of our models

In order to calculate the regularized coherent information (6) for our many-body correlated

channels, we will utilize the close relationship between the quantum channel capacity and the

entanglement measure known as the distillable entanglement [12]. This connection utilizes a

well-known mapping between quantum operations and quantum states. Given any quantum

operation E acting upon a d-level quantum system, one may form the quantum state:

J (E)= I ⊗ E(|+〉〈+|), (11)

where |+〉 = 1√
d

∑

i=1... d |i i〉 is the canonical maximally entangled state of two d-level systems.

The state J (E) is sometimes referred to as the Choi–Jamiolkowski state (CJ) of the operation

E [13]. It can be shown that the mapping from E to J (E) is invertible, and hence the state J (E)

gives a one-to-one representation of a quantum operation. We will show that for the kinds of

correlated error channel that we have described above in equation (9), the quantum channel

capacity Q(E) of the channel equals D(J (E)), the distillable entanglement of the state J (E).

To make the presentation more transparent, we will make the argument for the CJ state of

a particular single qubit channel, as it is straightforward to generalize the argument to the entire

6 Note that this does not always mean that our channel is causal in the sense discussed in [2]. As the number of

qubits changes, the state of the many-body system changes, and the output of the earlier uses of the channel will

change accordingly. This is in contrast to the requirement of causality imposed in [2]. However, in the limit of a

large number of channel uses this effect will probably be negligible for most reasonable cases.



family of memory channels described above. Hence, let us consider the following single qubit

‘dephasing’ channel:

E : ρ → pρ + (1 − p)ZρZ †, (12)

where p is a probability, and Z is the Pauli-Z operator. The CJ representation of this

channel is:

J (E)= I ⊗ E(|+〉〈+|), (13)

where |+〉 is chosen as in equation (11).

The argument relies upon the fact that the channel (12) possesses some useful symmetry.

This symmetry leads to the property that having one use of the channel is both mathematically

and physically equivalent to having one copy of J (E). Suppose that you have one use of E , you

can easily create J (E). However, it turns out that with one copy J (E) you can also implement

one use of E . Hence, both the operation and the CJ state are physically equivalent resources.

The argument works as follows. Suppose that you have J (E) and you want to implement one

action of E upon an input state ρ. This can be achieved by teleporting ρ through your copy of

J (E). This will leave you with the state E(σiρσ
†
i ), with the Pauli operator σi depending upon

the outcome of the Bell measurement that does the teleportation. However, the channel (12)

commutes with all Pauli rotations. So we can ‘undo’ the effect of the Pauli by applying the

inverse of σi , which for Paulis is just σi itself. Hence, we have: σiE(σiρσ
†
i )σi = E(ρ). Hence,

by teleporting into J (E) and undoing the Pauli at the end we can implement one use of the

operation.

This observation allows us to relate the channel capacity of the channel to the distillable

entanglement of the CJ state. The proof proceeds in two steps, and follows well-known ideas

taken from [12]. The aim is to show that the one-way distillable entanglement of J (E) is

equivalent to Q(E), so that previous results on D(J (E)) may be applied.

1. Proof that Q(E)6 one-way distillation: (i) Alice prepares many perfect EPR pairs and

encodes one-half according to the code that achieves the quantum capacity Q(E). (ii) She

teleports the encoded qubits through the copies of J (E), telling Bob the outcome so that he

can undo the effect of the Paulis. (iii) This effectively transports all encoded qubits to Bob,

at the same time acting on them with E . (iv) Bob does the decoding of the optimal code,

thereby sharing perfect EPR pairs with Alice, at the rate determined by Q(E). As this is a

specific one-way distillation protocol, this means that Q 6 D.

2. Proof that Q(E)> one-way distillation: (i) Alice prepares many perfect EPR pairs and

sends one-half of each pair through many uses of the channel E . (ii) She and Bob do one-

way distillation of the resulting pairs (this involves only forward classical communication

from Alice to Bob). (iii) Thereby they share the perfect EPR pairs, at the rate determined

by D(J (E)), the one-way distillable entanglement. (iv) They can use these EPR pairs to

teleport qubits from Alice to Bob. As this is a specific quantum communication protocol,

this means that Q > D.

These arguments can easily be extended to apply to any channel that is a mixture of Pauli

rotations on many qubits, hence including the memory channel models that we have described

above. Fortunately, the CJ state of our channel is a so-called maximally correlated state, for

which the distillable entanglement is known to be equivalent to the Hashing bound:

D(J (E))= S(trB{J (E)})− S(J (E)), (14)



where S is the von Neumann entropy. Note that for such channels E this expression is equivalent

to the single copy coherent information, which is hence additive for product channels E⊗n. In

our case we are interested in the regularized value of this quantity for correlated channels, i.e.:

Q({En})= lim
n→∞

D(J (E))

n
= lim

n→∞

S(J (En)A)− S(J (En))

n
, (15)

which can be computed quite easily as:

Q({En})= 1 − lim
n→∞

S(Diag(ρenv))

n
, (16)

where Diag(ρenv) the state obtained by eliminating all off-diagonal elements of the state of

the environment (in the computational basis). Hence, the computation of the quantum channel

capacity of our channel {En} reduces to the computation of the regularized diagonal entropy

in the limit of an infinite spin-chain. Although in most cases this quantity is unlikely to be

computable analytically, it is amenable to a great deal of analysis using the techniques of

many-body theory. It is also interesting to note the intuitive connection between expression (16)

and work on environment assisted capacities—in the case of random unitary channels, where

the unitaries are mutually orthogonal, the diagonal entropy in expression (16) has a natural

interpretation as the amount of classical information that needs to be recovered from the

environment in order to correct the errors [14, 15].

Although the above analysis has been conducted for two-level particles, it can be extended

to situations involving d-level systems. In the d-level case, one can replace CPHASE with a

controlled shift operation of the form:

∑

i=1,... ,d

|k〉〈k| ⊗ Z(k), (17)

where the Z(k)=
∑

j exp(i2πk j/d)| j〉〈 j | are the versions of the qubit phase gate generalized

to d-level systems, and the first part of the tensor product acts on the environment. With this

interaction all the previous analysis goes through, and the d-level version of equation (16):

Q({En})= log(d)− lim
n→∞

S(Diag(ρenv))

n
(18)

gives the regularized coherent information, where Diag(ρ) refers to the diagonal elements

in the d-level computational basis. It is important to consider the generalization to d-level

systems because the thermodynamic properties of many-body systems do not always extend

straightforwardly to systems with a higher number of levels. For instance, one possible

generalization of the Ising model to d-level systems is the Potts model, which leads to some

very interesting and non-trivial mathematical structure [16], and in the quantum Heisenberg

model the presence of a ground state gap depends on where the spins in the chain are integral

or half-integral [17].

The simplicity of equation (16) enables one to immediately write down many noise models

for which the regularized coherent information can both be calculated, and also represents

the quantum channel capacity of the correlated channel. In particular, let us suppose that the

environment consists of classical systems described by a classical Markov Chain (those readers

not familiar with the Markov chain terminology required here are directed to chapter 5 of [18]



for a very readable introduction). If the state at each ‘site’ s in the environment represents the

instantaneous state of a Markov chain at time s, then the regularized entropy in equation (18) is

given by the entropy rate of the Markov chain [18], provided that the Markov process is both

irreducible7 and possesses a unique stationary (equilibrium) state. Let the transition matrix of

M of the Markov chain be defined such that pi(s + 1)=
∑

j Mi j p(s) j , let vi be the i th element

of the stationary probability distribution, and let Hi be the entropy of column i in the Markov

chain transition matrix. With these conventions the entropy rate is given by:

lim
n→∞

S(Diag(ρenv))

n
=

∑

i=1,... ,d

viHi . (19)

In these cases the correlated channels fit quite neatly into the class of models proposed in

[2, 19], and moreover these channels will be forgetful [2]. As proven in [2], for forgetful

channels the regularized coherent information is equal to the quantum capacity (see [20] for

an independent coding argument which also works for Markov chain channels implementing

generalized Pauli rotations). Hence, for these models equation (18) represents the true quantum

channel capacity, and so we may write explicitly:

Q(Markov)= log(d)−
∑

i=1,... ,d

viHi . (20)

When unique, the stationary distribution of a Markov chain is given by the unique maximal

right eigenvector (of eigenvalue 1) of the transition matrix. Related results have been obtained

independently in [20, 21].

4. Environment that is a classical system

In the case of a classical environment, the second term of equation (16) is precisely the entropy

of the environment, and so it can easily be computed in terms of the partition function.

The partition function of the classical system is defined as:

Z =
∑

i

exp(−βEi), (21)

where the Ei are the energies of the various possible configurations, and β = 1/(kBT ), with T

the temperature and kB Boltzmann’s constant. The entropy (in nats) of the system is given by

the following expression:

S(Diag(ρenv))=
(

1 −β ∂
∂β

)

ln Z . (22)

This means that in the case of a classical environment our channel capacity becomes

Q({En})= 1 − log2(e)

(

1 −β ∂
∂β

)

lim
n→∞

1

n
ln Z , (23)

where the log2(e) converts us back from nats to bits. This expression means that we can use all

the machinery from classical statistical mechanics to compute the channel capacity.

7 Irreducibility means that given any starting state there is a nonzero probability of eventually going through any

other state.



In particular, any spin-chain models from classical physics that can be solved exactly will

lead to channels with memory that can be ‘solved exactly’ (provided that one can show that the

regularized coherent information is indeed the capacity, a problem that we shall discuss in later

sections). The most famous example of an ‘exactly solvable’ classical spin-chain model is the

Ising model. We will discuss the classical Ising model in detail in the next section, as it will also

be relevant to a certain class of quantum spin-chains.

However, there are also many classical spin-chain models that cannot always be solved

exactly, but which can be connected to a wide variety of physically relevant models with

interesting behaviour. As just one example, consider modifying the Ising spin-chain model to

allow exponentially decaying interactions between non-adjacent spins. The resulting model can

be related to a quantum double-well system, and is also known to exhibit a phase transition8.

This means that the corresponding correlated channels will also exhibit similar behaviour,

provided of course that the limit equation (6) truly represents the quantum channel capacity

for the models.

In this paper, we will not give detailed discussion of any further models involving a

classical environment (other than the classical one-dimensional (1D) Ising chain, which we

will discuss in the next section). As our expression (16) is simply the entropy of the classical

environment, the interested reader may simply refer to the many interesting classical models

(both solvable and almost solvable) that are well documented in the literature. Of course, to

make the analysis rigorous one would need to show that expression (6) is the formula for the

quantum capacity in these cases. However, we conjecture that for most sensible models this

should be true. In the final section of the paper, we will present an analysis that demonstrates

this for a family of 1D models.

5. Quantum environments

Unfortunately expression (16) does not correspond to a standard thermodynamic function of

the environment state when the environment is modelled as a quantum system. It represents the

entropy of the state that results when the environment is decohered by a dephasing operation on

every qubit. Although this quantity is not typically considered by condensed matter physicists,

there is some hope that it will be amenable to analysis using the techniques of the many-body

theory.

In this paper, we will make a small step towards justifying this hope by analytically

considering a class of quantum environments inspired by recent work on so-called finitely

correlated or matrix product states [22].

We will leave attempts to analytically study more complicated models to another occasion,

although in figure 2, we present some numerical evidence that the quantum 1D Ising model

displays a sharp change in capacity at the transition point.

6. Quantum capacity for finitely correlated environments described by

rank-1 matrices

Finitely correlated or matrix product states are a special class of efficiently describable quantum

states that have provided many useful insights into the nature of complex quantum systems [22].

8 See e.g. the lecture notes at http://www.tcm.phy.cam.ac.uk/bds10/phase/pt.ps.gz.

http://www.tcm.phy.cam.ac.uk/bds10/phase/pt.ps.gz


0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4 

0.5

0.6

0.7

0.8

0.9

1.0

25Jc

1
−

S
(d

ia
g
(ρ

))

Lengths 6–18 

Figure 2. Numerics for the quantum Ising model suggest that there may be

transition behaviour in the capacity at the phase transition point of the 1D

quantum Ising model. In this figure, the central point of the horizontal axis is the

transition point of the quantum Ising model, and the curves become increasingly

steep as the number of spins is increased from 6 to 18. As the quantum Ising

model can be solved exactly in 1D, it is quite possible that an analytical solution

may be found for the channel capacity.

In a recent paper [23] it has been demonstrated that a variety of interesting Hamiltonians can

be constructed with exact matrix product ground states, such that the Hamiltonians in question

undergo non-standard forms of quantum ‘phase transition’.

As matrix product states are relatively simple to describe, one might hope that for such

ground states the computation of equation (16) may be particularly tractable. In this section,

we will see that for matrix product states involving rank-1 matrices the analysis is particularly

simple, and may be reduced to the solution of a classical 1D Ising model.

Let us consider a 1D matrix product state, where each particle is a two-level quantum

system, |0〉, |1〉. Let us assume that the matrices associated to each level are independent of the

site label, and are given by Q0 for level |0〉 and Q1 for level |1〉. Hence, the total unnormalized

state can be written as:

|ψ〉 =
∑

i, j,k...∈{0,1}
tr{QiQ jQk . . . }|i jk . . . 〉. (24)

From the form of expression (16) we see that we are only interested in the weights of

the diagonal elements in the computational basis, or equivalently the state that results from

dephasing each qubit. It is easy to see that this unnormalized state will be given by:

ρ =
∑

i, j,...∈{0,1}
tr{(Qi ⊗ Q∗

i )(Q j ⊗ Q∗
j) . . . }|i j . . . 〉〈i j . . . |. (25)

In this expression if we relabel the matrices A = Q0 ⊗ Q∗
0 and B = Q1 ⊗ Q∗

1 then the

probability of getting various outcomes when measuring the environment in the computational



basis will be given by traces of all possible products of the As and Bs. For instance, the

probability of getting 01100. . . , when measuring the environment in the computational basis

will be given by:

p01100... = 1

C(N )
tr{ABBAA . . . }, (26)

where N is the number of qubits in the environment, and C(N ) is a normalisation factor

given by:

C(N )= tr{(A + B)N }. (27)

C(N ) can be computed by diagonalization. In the rest of this section, we will be interested

in cases where A and B are both square rank-1 matrices. Some of the example Hamiltonians

discussed in [23] have ground states with this property, and in fact, some special cases of the

noise models presented in [5, 6, 8, 9] can also be expressed in the form of matrix product

environments with rank-1 matrices (although in general those models require more than two

matrices as they require environmental spins with more than two levels). We will show that in

such situations the diagonal entropy in the computational basis is equivalent to the entropy of a

related classical Ising chain.

The first thing to note is that rank-1 matrices are almost idempotent. In fact, if A and B are

both rank-1 matrices, then we have that:

An = an−1A, Bm = bm−1B, (28)

where a is the only nonzero eigenvalue of A, and b is the only nonzero eigenvalue of B. Note

that because of the form of A and B as the tensor product of a matrix and its complex conjugate,

these eigenvalues a, b must be non-negative. We can define the normalized matrices:

Ã = A

a
, B̃ = B

b
. (29)

These normalized matrices are idempotent. To see how this can help, consider a particular

string, say,

p0111000 = 1

C(N )
tr {(ABBBAAA)} ,

if we substitute Ã and B̃ into this expression, and use the idempotency, then the strings of

consecutive As and Bs will collapse to just one Ã or B̃, with total factors of a4 and b3 inserted

outside the trace:

p0111000 = 1

C(N )
a4b3tr

{(

Ã B̃ Ã
)}

= 1

C(N )
a4b3tr

{(

Ã B̃
)}

. (30)

It is easy to see that this form is quite general—the probability of getting a particular string will

collapse to a simple expression. If there are l occurrences of A and n − l occurrences of B in

the string, and K counts the number of boundaries between blocks of As and blocks of Bs, then

the probability of the string becomes:

1

C(N )
(albN−l)tr

{

(

Ã B̃
)K
}

.

Noting that Ã B̃ will also be a rank-1 matrix, let us use the letter c to refer to its only nonzero

eigenvalue. Hence, the probability becomes:

1

C(N )
albN−lcK . (31)



This expression tells us quite a lot—firstly for any given channel described by rank-1 MPS

states, the only parameters that matter are a, b and c. So we need not work with the actual

matrices defining our state, we only need to work with matrices of our choice that have the

same parameters a, b and c. In the following, we will assert that c is non-negative—this is

guaranteed because of the following argument: it holds that c = tr{ Ã B̃}, because Ã B̃ is rank-1,

but because Ã B̃ = Q0Q1 ⊗ Q∗
0Q

∗
1/(ab), where a and b are non-negative, this means that c must

be non-negative.

So let us just go ahead and pick the following matrices:

A =
(

a
√
cab

0 0

)

, B =
(

0 0√
cab b

)

. (32)

These matrices clearly have nonzero eigenvalues a and b, respectively. So what about the

eigenvalue of Ã B̃ ? For the above choice of matrices we find that:

Ã B̃ =
(

c

√

cb

a

0 0

)

. (33)

Hence, we find that the matrices that we have chosen have the correct values of a, b and c, as

required. Now we notice that the matrices that we have chosen in equation (32) are very similar

to the matrices that would define a classical Ising chain. In fact, if we make the following change

of variables from a, b and c to J, D and M :

a = exp(β(J + M)), b = exp(β(J − M)), c = exp(−β(4J + 2D)). (34)

The inverse transformations are:

β J=(ln(a)+ ln(b))/2, βM=(ln(a)− ln(b))/2,
(35)

βD=−(ln(a)+ ln(b))− (1/2) ln(c).

It turns out that the parameters J and D will represent coupling constants and M will represent

a magnetic field. To see this, let us insert the new parameters into the choice of A and B in

equation (32). Then we get that the matrices (32) can be written as

A =
(

exp(β(J + M)) exp(−β(J + D))

0 0

)

,

(36)

B =
(

0 0

exp(−β(J + D)) exp(β(J − M))

)

.

The matrices in such a rank-1 MPS are essentially the top row and bottom row of a transfer

matrix. Comparing these matrices to the classical Ising transfer matrix, we see that the

following Hamiltonian (where for convenience we now follow the usual physics convention that

si ∈ {−1,+1}):
H = −

∑

i

Jsisi+1 − Msi + D(1 − sisi+1)= −
∑

i

(J − D)sisi+1 − Msi + D. (37)

The D is just a constant shift in spectrum, so we can simply consider the Ising chain with

Hamiltonian:

H = −
∑

i

(J − D)sisi+1 − Msi . (38)



Figure 3. This schematic figure shows the channel capacity when the

environment is the ground state of the Hamiltonian given in equation (41).

The symmetry in this plot is to be expected as the channel is invariant under

the replacement g → −g. However, near the ‘phase transition’ point g = 0, the

gradient diverges.

The partition function for such a chain of N particles depends upon the transfer matrix for this

(rescaled!) Hamiltonian:

T =
(

exp(β(J − D + M)) exp(−β(J − D))

exp(−β(J − D)) exp(β(J − D − M))

)

. (39)

Now from the partition function, we can calculate the entropy, and hence the capacity of our

channel. The formula turns out to be:

C = 1 − log2(e)

(

1 −β ∂
∂β

)

lim
N→∞

1

N
ln Z = 1 − log2(e)

(

1 −β ∂
∂β

)

ln λ1, (40)

where λ1 is the maximal eigenvalue of the transfer matrix (39). Using these equations and

equation (35), one can perform the (tedious) manipulation required to derive a formula for

the regularized coherent information in terms of the coefficients a, b and c. Although we do

not present the formula that is obtained, figure 3 shows the result for the model Hamiltonian

presented in [23]:

H =
∑

i

2(g2 − 1)σ (i)z σ
(i+1)
z − (1 + g)2σ (i)x + (g− 1)2σ (i−1)

z σ (i)x σ
(i+1)
z (41)

for which the ground state is known to be a matrix product state of the form:

Q0 =
(

0 0

1 1

)

, Q1 =
(

1 g

0 0

)

.

This model system has a non-standard ‘phase transition’ at g = 0, at which some

correlation functions are continuous but non-differentiable, while the ground state energy is

actually analytic [23]. As discussed in the caption of figure 3, this behaviour is mirrored in the

channel capacity.



7. Conditions under which the regularized coherent information represents

the true capacity

In this section, we will explore under what conditions our assumption that the regularized

coherent information of equation (6):

Q({En}) := lim
n→∞

I (En)

n
(42)

correctly represents the true quantum capacity of our correlated channels, assuming of course

that this limit exists. In the course of the discussion, we will also need to consider under what

conditions the regularized Holevo bound:

C(En) := lim
n→∞

χ(En)

n
(43)

represents the capacity of the channel for classical information. The Holevo bound χ(E) for a

quantum channel E is defined as [24]:

χ(E)= sup
{pi ,ρi }

S

(

E

(

∑

i

piρi

))

−
∑

i

pi S (E(ρi)) , (44)

where the supremum is taken over all probabilistic ensembles of states {pi , ρi}, and S as usual

represents the von Neumann entropy. As pointed out in [2, 25], showing that equations (42)

and (43) are upper bounds to the quantum/classical capacity of a correlated channel is

straightforward—one can use exactly the same arguments used in the memoryless case

[4], [26]–[28]. Showing that equations (42) and (43) also give lower bounds to the relevant

capacities is not as simple, and may not be true for some many-body environments.

However, it turns out that if the correlations in the many-body system fall off sufficiently

strongly, then the channel will be reasonably well behaved and equation (42) is the true capacity.

In this section, we will make this statement quantitative. We will closely follow the approach

taken in [2] in the analysis of so-called forgetful channels. Some of the subtleties involved in the

analysis are explained in more detail in section 6 of that paper. The conditions that we obtain are

independent of the unitary which governs the interaction between each system particle and its

corresponding environment, and so are applicable more widely than the dephasing interaction

considered here.

7.1. A qualitative description of the argument

In this subsection, we present an intuitive sketch of the argument that we will follow. Imagine

that the correlated channel is partitioned into large blocks that we shall call live qubits,

separated by small blocks that we shall call spacer qubits. The idea is to throw away the

spacer qubits, inserting into them only some standard state, and to only use the live qubits

to encode information (see figure 4). If we are to follow this procedure, then we will not be

interested in the full channel, but only in its effect upon the live qubits. Let us use the phrase

live channel to describe the resulting channel, i.e. the reduced channel that acts on the live

qubits only. If the correlations in the many-body system decay sufficiently strongly, then by

throwing away just a few spacer qubits we will find that the live channel closely approximates

(in a sense to be discussed later) a memoryless channel. Let us call this memoryless channel

the product channel. One can imagine trying to use the codes that achieve the capacity of the



Figure 4. The live blocks of length l are separated by spacer blocks of length s.

By discarding the spacer particles the channel effectively becomes a product

channel on the live blocks.

product channel, without any further modifications, as codes for the live channel. It turns out

that under the ‘right conditions’ these codes are not only good codes for the live channel, but

their achievable rates approach equation (42). The goal of the next subsection will be to explore

exactly what these ‘right conditions’ are.

The quantitative arguments follow the method used in [2], where three steps are required

to show that equation (42) is an achievable rate:

[A] First, we must show that product codes for the transmission of classical information

are good codes for the live channel.

[B] Then we must show that these good codes allow the regularized Holevo quantity to be an

achievable rate. This is done by showing that the product channel Holevo quantity (which

can be achieved by product codes) essentially converges to the regularized Holevo quantity

for the whole channel.

[C] Then we must argue that these arguments for the transmission of classical information can

be ‘coherentified’ (in the manner of [4]) to a good quantum code attaining equation (42).

In the next subsection, we go through this process in detail to derive sufficient conditions

to demonstrate the validity of equation (42) for our many-body channels.

7.2. Derivation of the conditions

In this subsection, we will go through steps [A], [B] and [C] in turn.

7.2.1. Step [A]. We will assume that the many-body systems in question satisfy periodic

boundary conditions and are translationally invariant (this means that the corresponding

correlated channel {En} does not quite fit into the definition of causality proposed by [2],

however, it allows us to avoid the technicalities required to analyse a truly, genuinely, infinite

many-body system). Let us consider a specific length of chain N , split into v = N/(l + s)

sections, each consisting of one live block of length l and one spacer block of length s := δl ≪ l.

In the following the sizes N , l will generally be taken to be large enough that the statements we

use hold. The live channel will be defined by:

Elive : A → trenv{U (ρL1L2... .Lv ⊗ A)U †}, (45)

where A represents the state that Alice inputs to the live channel, U represents the interaction

between the environment and A, the labels L1, L2, . . . , Lv represent the live blocks from

sections 1, . . . , v, and the trace is taken over the environment. Due to translational invariance



the reduced state of the environment corresponding to each given live block will be same, and

so let us denote this state by ρlN . With this notation, the product channel will be defined by:

Eproduct : A → trenv{U ((ρlN )⊗v ⊗ A)U †}. (46)

Note that both the live and product channels have a dependence upon both the live block length l

and the total number of spins N . Let us first consider using the product and live channels to send

classical information. By definition, if a given rate R is achievable for the product channel, then

for every error tolerance ǫ > 0 there is an integer Nǫ such that for n > Nǫ channel uses there

exist a set of ν = ⌊2nl R⌋ codeword nl-qubit states {ρ1, . . . , ρν} and a corresponding decoding

measurement {M1, . . . ,Mν} such that:

tr{Eproduct(ρi)Mi}> 1 − ǫ ∀i ∈ 1 . . . ν. (47)

If the same codebook and decoding measurements are used without alteration for the live

channel, then the error would be:

tr{[Elive(ρi)− Eproduct(ρi)]Mi} + tr{Eproduct(ρi)Mi}. (48)

As the addition of Alice’s state A, the unitary interaction U , and the POVM element Mi can

all be viewed as one new POVM element acting only on the environment, the left term in this

formula can be bounded by [24]

|tr{[Elive(ρi)− Eproduct(ρi)]Mi}|6 1

2
‖ρL1L2... .Lv − (ρlN )⊗v‖1,

where ‖X‖1 := tr{
√
X †X} is the trace norm. Hence, the error (48) in using the product code for

the live channel can be bounded by:

tr{Elive(ρi)Mi}> 1 − ǫ− 1

2
‖ρL1L2... .Lv − (ρlN )⊗v‖1.

Assume that the rightmost term in this equation is bounded by:

‖ρL1L2... .Lv − (ρlN )⊗v‖1 6 C v lEexp(−Fs) (49)

for positive constants C, E and F . This assertion will be demonstrated for some special cases

in section 8. Then this would mean that the error becomes bounded as

tr{Elive(ρi)Mi}> 1 − ǫ−C v lEexp(−Fs). (50)

The ǫ part of this error depends upon the number of blocks v. One potential problem that we

immediately face is that to decrease ǫ we need to increase v, however, increasing v inevitably

increases the last error term in the equation. It is hence not a priori clear that both error terms

can be made to decrease simultaneously. However, it can be shown [2, 29] that if we pick

v = l5, s = δl and δ > 0 then both error components can be made to vanish as l increases, while

still operating at the achievable rates of the product channels (in fact, the number of sections v

could be given any polynomial or subexponential dependence on l provided that asymptotically

v(l) > l5).

So we see that provided condition (49) can be demonstrated for the many-body systems that

we consider, then the product channel works well for the live channel, as long as a large enough

live block size is used (however small the fraction of spacer qubits δ). Hence, equation (49) is

the first of our sufficient conditions. In section 8, we demonstrate that condition (49) (which is

identical to equation (63) later in the paper) holds for some interesting classes of many-body

system, including matrix product states.



Figure 5. To show that the product channel (which is just a product of the reduced

channel on a single live block) Holevo capacity is essentially the regularized

capacity, we need to show that the reduced channel on a single live block is

essentially independent of the total length of the chain. Hence, we need to show

that the reduced state of l contiguous environment spins is approximately the

same regardless of whether the chain is (a) much longer than l, or (b) slightly

longer than l.

7.2.2. Step [B]. Now that we know that the product code is also suitable for the live channel,

it is necessary to check that the regularized Holevo bound (i.e. the regularized Holevo bound for

the full channel without throwing spins away) is actually an achievable rate for the live/spacer

blocking code that has been used. In order to make this analysis it will be convenient to define a

little more notation. For a total chain of length n as before let En denote the noisy channel. For a

contiguous subset of j 6 n of the spins that Alice sends, let E j
n denote the effect of the channel

only upon those spins. Due to translational invariance the location of the spins is irrelevant, as

long as they form a contiguous block.

A given product channel with live block length l and a total number of spins N = v(l + s)=
l6(1 + δ) has a Holevo quantity given by:

χ(E lN )= χ(trenv{U ((ρlN )⊗ •)U †}), (51)

where the • merely acts as a place holder for the inputs to the channel. Our goal is to show

that for large enough l this expression is close to the regularized Holevo bound equation (43)

(see figure 5). It is not too difficult to derive conditions under which this will be the case.

Suppose that we have a spin-chain of total length l +1(l), where 1(l)≪ l. In fact we will

only be considering functions 1(l) > 0 such that liml→∞1/(l)= 0. The subadditivity and the

Araki–Lieb inequalities for the entropy ([24], section 11.3.4), i.e.

S(A)+ S(B)> S(AB)> |S(A)− S(B)| (52)

can be inserted straightforwardly into the Holevo bound to show that:

χ(E ll+1)> χ(El+1)− 21log(d), (53)

where d is the dimension of each communication spin (see also [2]). This equation follows from

the fact that the Holevo bound is the difference of two entropic terms, each of which can change

by at most 1log(d) under the tracing out of 1 d-level particles. Dividing through by l now

gives:

χ(E ll+1)

l
>

l +1

l

χ(El+1)

l +1
− 2

1

l
log(d). (54)



This equation tells us that the Holevo quantity for a subset of l spins is very close to the Holevo

quantity for a full chain of l +1 spins, as long as 1 is small. Our goal now is to show that if the

subset of l spins is drawn from a much longer chain of length N = l6(1 + δ), then the subset still

has essentially the same value for the Holevo quantity, and so the regularized Holevo quantity

represents the capacity of the product channel. Intuition suggests that if the correlations decay

fast enough, then it should be the case that for N = l6(1 + δ), we should have approximately

E ll+1 ∼ E lN , as a given region should not ‘feel’ how long the chain is. Now suppose that we

define

P = P(l,1) := ‖ρll+1 − ρlN‖1 = ‖ρll+1 − ρl
l6(1+δ)

‖1. (55)

Then for a given input state ω on the live block in question the output states will differ by at

most:

‖trenv{U [ω⊗ (ρll+1 − ρl
l6(1+δ)

)]U †}‖1 6 ‖U [ω⊗ (ρll+1 − ρl
l6(1+δ)

)]U †‖1 6 P(l,1). (56)

Hence, Fannes inequality [30] (of which a version suitable for our purposes is |S(X)− S(Y )|6
‖X − Y‖1 log(d)+ log(e)/e) can be used to bound the difference in the two Holevo functions

χ(E ll+1), χ(E
l
N ) as follows:

χ(E l
l6(1+δ)

)

l
>
χ(E ll+1)

l
− 2

(

1

l

)(

P log(d l)+
log(e)

e

)

.

Putting this equation together with equation (54) gives:

χ(E l
l2(1+δ)

)

l
>

l +1

l

χ(El+1)

l +1
− 2

1

l
log(d)− 2

(

1

l

)(

P log(d l)+
log(e)

e

)

and taking the limit of large l gives:

lim
l→∞

χ(E l
l2(1+δ)

)

l
> χ∞ − lim

l→∞
2 (P log(d)) .

So, as long as we can pick a function 1(l) such that liml→∞1(l)/ l = 0, and such that the

norm distance P(l,1(l)) vanishes with increasing l then we know that the regularized Holevo

quantity is the correct capacity.

7.2.3. Step [C]. Now that we have understood the conditions under which the regularized

Holevo bound represents the capacity for the transmission of classical information, we need

to try to undertake the same analysis for quantum information. As was also exploited in [2],

the way that Devetak’s work [4] proves that the regularized coherent information equals the

quantum channel capacity of memoryless channels is to first prove a capacity formula for the

transmission of private (secret) classical information, and then to make the private coding

scheme coherent. This ‘coherentification’ procedure applies directly to correlated channels,

and so to argue that the regularized coherent information (42) is also achievable for channels

with correlated noise, it is sufficient to show that the private information codes that work for

the product channel are also suitable for the live channel. So now suppose that a malicious

eavesdropper is in charge of the environment of our correlated channel. We need to prove that



the information that she can access is still limited when product private codes are used for the

live channel. We can see that the output that Eve obtains is given by:

EEve
live : A → trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †}, (57)

where the tildes mean that environment state ρ must be extended to give a closed system (i.e. ρ̃

is a pure state), the entire environment of which is assumed to be totally under Eve’s control. In

the case of the product channel, the privacy condition means that for all ǫ > 0 there is a v0 such

that for all v > v0 there exists some standard state θ such that:

‖trsys{Ũ ((ρ̃lN )⊗v ⊗ A)Ũ †} − θ‖1 6 ǫ (58)

for all inputs A from the privacy code (readers familiar with [2, 4] will note that in those works

an extra randomization index was included as a label in the code states-however, in our context

this is unimportant and so we omit it for ease of notation). Applying the same code to the live

channel gives the estimates:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †} − θ‖1 6 ǫ + ‖trsys{Ũ ([ρ̃L1L2... .Lv − (ρ̃lN )⊗v] ⊗ A)Ũ †}‖1

6 ǫ + ‖ρ̃L1L2... .Lv − (ρ̃lN )⊗v‖1. (59)

The last term in this equation represents the norm difference between the purifications of two

different possible environmental states. We are free to pick the purifications that give the greatest

overlap between the two environment states. Although this may seem like a contradictory step,

as we should allow Eve to have control over the environment, it is in fact valid because the

product code is by assertion private for all possible extensions of the product channel. The

coherentification procedure leads to the distribution of maximally entangled states which are

automatically uncorrelated from the environment, whatever purification Eve decided to use.

The last line from the previous equation hence becomes (using the fact that for two pure states

the overlap and the trace distance are related by ‖(|φ〉〈φ| − |ψ〉〈ψ |)‖1 = 2
√

1 − |〈ψ |φ〉|2, see

Nielsen and Chuang [24, p 415, equation (9.99)], noting that the factor of 2 comes in from a

different convention for the trace norm):

6ǫ + 2

√

1 − F2(ρL1L2... .Lv , (ρ
l
N )

⊗v), (60)

where F is the Uhlmann fidelity [24]. Hence, using the well-known relationship between

the Uhlmann fidelity and the trace norm of two states (1 − F(x, y)6 2‖x − y‖1 6
√

1 − F(x, y)2, Nielsen and Chuang [24, p 416], from which one can obtain
√

1 − F(x, y)2 6√
2(1 − F(x, y))6 2

√‖x − y‖1), we find that:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †} − θ‖1 6 ǫ + 4

√

‖ρL1L2... .Lv − (ρlN )⊗v‖1. (61)

Putting the norm bound (49) (which we have not yet justified) into this equation gives:

‖trsys{Ũ (ρ̃L1L2... .Lv ⊗ A)Ũ †} − θ‖1 6 ǫ + 4
√

C v lEexp(−Fs), (62)

which is small enough for the assignment v = l5, s = δl, as long as l is large enough.



7.2.4. Summary of sufficient conditions. All of this analysis means that in order to argue that

the regularized coherent information and the regularized Holevo bound are the true quantum or

classical capacities, the following two conditions taken together are sufficient:

1. To show that the product codes are also good for the partitioned memory channel,

‖ρL1L2... .Ll5
− (ρlN )⊗l5‖1 6 C l5 lEexp(−Fs), (63)

for some positive constants C, E and F , where N = l6(1 + δ), s = δl.

2. To show that the regularized coherent information is the appropriate rate the these codes

we need to show that

lim
l→∞

‖ρll+1(l) − ρll6(1+δ)
‖1 = lim

l→∞
P(l,1(l))= 0 (64)

for some function 1(l) such that liml→∞1(l)/ l = 0. In fact, if equation (63) holds, in this

condition we could replace ρl
l6(1+δ)

with ρlvl(1+δ), where the number of sections v is any

function of l with a sub-exponential dependence (e.g. a polynomial) that is asymptotically

larger than l5.

To demonstrate that these conditions hold for the most general types of many-body system is

a non-trivial task. However, in a number of interesting cases it is possible to prove that these

conditions hold. In the remaining sections, we demonstrate that these conditions hold for finitely

correlated/matrix product states, as well as for a class of 1D bosonic system whose ground states

may be determined exactly.

8. Proof of property equation (63) for various states

In this section, we provide proofs for the validity of equation (63) for a variety of quantum states.

These include matrix-product states for which we have discussed explicit memory channels in

this paper. In fact, the proofs that we present for matrix product states are essentially contained

in previous works such as [22]. We also demonstrate analogous results for the ground state of

quasi-free bosonic systems as such systems may provide interesting examples for future work.

In addition to the results we present here and in the next section, M Hastings has demonstrated

that conditions (63) and (64) hold for certain interesting classes of fermionic system [31].

8.1. Matrix product or finitely correlated states

The proof that we present here is essentially one part of the proof of proposition 3.1 in [22]. Our

presentation of the argument benefits from the arguments presented in appendix A of [32] and

the review article [33].

An important tool in the argument is the use of the Jordan canonical form [34]. As some

readers may be unfamiliar with this technique, we briefly review it here. If a square matrix M

has complex eigenvalues {λα}, then it can be shown that a basis may be found in which the

operator can be expressed as the following direct sum:

M =
⊕

α

(λαIα +Nα), (65)

where each Iα is an Identity sub-block with an appropriate dimension, and eachNα is a nilpotent

matrix, meaning that for each Nα there is some positive integer k such that N k
α = 0. Moreover,



each nilpotent matrix Nα itself may be written as a block-diagonal matrix, where each sub-

block is either a zero matrix, or is all zero except possibly for 1s that may be positioned on the

super-diagonal. In other words, each sub-block of a given Nα is either zero or is of the form:












0 1 0 0 .

0 0 1 0 .

0 0 0 1 .

0 0 0 0 .

. . . .













. (66)

The decomposition (65) is the Jordan canonical form of M . In our case the matrix M will be

constructed from a completely positive map that can be associated to the matrix product states

that we consider. One consequence of this, for reasons that we discuss later, is that we will

ultimately only be interested in operators M whose eigenvalues satisfy 1 = λ1 = |λ1|> |λ2|>
|λ3|> . . . . For a related reason, we will also only be interested matrices M for which there is a

unique eigenvector corresponding to λ1, and also for which the sequence of integer powers Mr ,

r = 1, . . . ,∞ is bounded.

For matrices obeying these extra conditions, we may exploit the Jordan normal form in

the following way. Pick the smallest integer k such that N k+1
α = 0 for all N k

α . Then Mr can be

written as follows:

Mr =
⊕

α

[

∑

m=0,... ,k

(

r

m

)

λr−m
α Nm

α

]

. (67)

If r is large, then all blocks corresponding to α 6= 1 will become small because of the λr−m
α term,

and so the only sizeable contribution to Mr will come from the block corresponding to α = 1,

i.e. the sub-block:
[

∑

m=0,... ,k

(

r

m

)

Nm
1

]

. (68)

Now we have asserted that the sequence of operators Mr is bounded. However, it is not too

difficult to show that for r = 1, . . . ,∞ the sequence of operators (68) becomes unbounded if

N1 is nonzero. This means that if the sequence of operators Mr is bounded, we are forced to

conclude that N1 = 0, and hence as M has a unique maximal eigenvector, this means that I1 is

an identity matrix of dimension 1 × 1, i.e. I1 = 1.

Putting all this together means that a square matrix M with a unique maximal eigenvalue 1,

such that the sequence Mr is bounded, may be decomposed as:

M = 1 ⊕
⊕

α 6=1

(λαIα +Nα). (69)

This means that Mr can be written in the form:

Mr = 1 ⊕ λr2





⊕

α 6=1

∑

m=0,... ,k

(

r

m

)(

λr−m
α

λr2

)

Nm
α



 . (70)

For our purposes it will be convenient to pull out a factor r k from the term in square brackets:

Mr = 1 ⊕ r kλr2



⊕

α 1

∑

m 0,... ,k

(

r

m

)

r k

(

λr−m
α

λr2

)

Nm
α



 . (71)



This has the advantage of making the operator in square brackets bounded even as r → ∞. This

form for Mr will be extremely useful to us. We will apply it to a completely positive map that

can be associated to any matrix product state. Using this, we will show the decay of correlations

required.

The relationship between matrix product states and CP maps is described in detail in

[22, 33]. Any matrix product state can be generated by repeatedly acting on a fictitious ancilla

particle using an appropriately constructed CP map. Suppose that we have a matrix product

state of N particles j ∈ {1, . . . , N }, each associated with a Hilbert space H j . Consider also a

fictitious ‘generator’ ancilla system on a finite dimensional space Hgen. It can be shown that

the state of the N particles in the matrix product state can be defined as the state that results

from an appropriate CP map T : B(Hgen)→ B(Hgen)⊗B(H j) which generates each particle

j ∈ {1, . . . , N } in sequence. The generating ancilla is then traced out to give the matrix product

state of the N particles. Related to the map T is the completely positive map Q, which is the

restriction of the map T to the generator ancilla as both input and output. The mapQ essentially

represents the transfer matrix of the MPS—for a review of how to construct T for matrix product

states, see [33].

The starting state of the fictitious generator ancilla is usually taken as a fixed point of Q,

in the order that the MPS be translationally invariant. Away from a phase transition point, the

CP map Q has a unique fixed point of eigenvalue 1, with all other eigenvalues of absolute value

strictly less than 1. Let this fixed point of Q be the state σ . Furthermore, as Q is a CP map, it is

clear that the sequence of maps Qr is bounded. Hence, as Q acts as a finite dimensional linear

operator taking the ancilla space to itself, we can also think of it as a square matrix and apply

equation (71) to represent powers Qr of the map. Let us use this form to compute the action

of Qr on an input density matrix ω of the fictitious ancilla. As any density matrix is taken to

a density matrix by a CP map, we may apply (71) to give that the output of Qr must have the

following form:

Qr(ω)= σ + r kλr2 2r , (72)

where in the second term 2r is a sequence of operators whose norm can be bounded, and the

r kλr2 term (which governs the size of the deviation from the final fixed point σ ) arises as a

consequence of equation (71). This equation essentially states that the deviation of Qr(ω) from

σ falls off as fast as r kλr2. Although the explicit form of 2r depends upon the input state, a

bound on the norm of 2r can easily be constructed that is independent of ω. This means that

limr→∞Q
r =6, where we define 6 as the (idempotent) channel that discards the input ancilla

state and creates a copy of σ in its place. For finite r we may write:

Qr =6 + r kλr2 2
′, (73)

where 2′ now represents operations of bounded norm acting on states of the ancilla (we have

dropped the potential r -dependence of 2′ to keep notation uncluttered, as it is unimportant).

Our goal in the remainder of this subsection will be to apply this deviation estimate to show

that equation (63) holds for matrix product systems. This can be done in two steps. In the first

step, we show that for two large blocks of length L separated by a distance d (eventually L will

become the length of the live blocks l, and d will become the spacer distance δl), the reduced

state can be approximated by a product. The second step will use the triangle inequality to go

from this result to the full condition (63).



The first step proceeds as follows. For convenience we will consider a chain of total chain

of length 2n + 2L + d , for which the state of the whole chain can be written:

tranc

{

T n+L+d+L+n(σ )
}

. (74)

If we take the limit as n → ∞, the reduced state of the two large blocks A and B each of length

L can be written

ρAB = tranc

{

6T LQdT L6(σ)
}

(75)

and the individual reduced states of each block A and B can be written:

ρA = tranc

{

6T L6(σ)
}

(76)

and

ρB = tranc

{

6T L6(σ)
}

. (77)

Now from equation (73), we know that up to a correction dkλd22
′, the channel Qd becomes

equivalent to 6. Hence, we find that ρAB and ρA ⊗ ρB deviate as follows:

‖ρAB − ρA ⊗ ρB‖ = dkλd2‖tranc{6T L2′T L6(ω)}‖6 constant × dkλd2 (78)

where the constant is independent of L . Now for our situation L is simply the size of each block

l, and the spacing between the blocks is s = δl. Hence, for two live blocks separated by one

spacer block this bound becomes:

‖ρAB − ρA ⊗ ρB‖6 constant × skλs2 6 constant × skexp(log(λ2)s).

To go from this result for two live blocks to equation (63) one simply notes that the above

argumentation can also be applied to blocks of unequal size, and then the triangle inequality

applied to sequences sums of a similar structure to ‖ρL1L2L3L4
− ρL1L2L3

⊗ ρL4
‖ + ‖ρL1L2L3

⊗
ρL4

− ρL1L2
⊗ ρL3

⊗ ρ4‖ yields equation (63) with only a polynomial overhead in l.

8.2. Bosonic systems

Here, we consider chains of harmonic oscillators whose Hamiltonian can be written in

the form

H = p̂p̂T/2 + x̂V x̂T/2, (79)

where h̄ = 1 and we arrange the canonical conjugate position and momentum operators in

vector form x̂ = (x̂1, . . . , x̂n) and p̂ = ( p̂1, . . . , p̂n) and introduced the so-called potential matrix

V [35]. The potential matrix encodes the interaction pattern of the harmonic oscillators in the

chain. From now on we assume that V is a k-banded matrix, i.e. Vi, j = 0 for |i − j |> k/2.

Physically this implies that interaction strength vanish strictly beyond the (k/2)th neighbour.

An important quantity in this context is the symplectic matrix σ which is defined by σ jk =
〈[R̂ j , R̂k]〉, where we denote R̂ = (x̂1, . . . , x̂n, p̂1, . . . , p̂n).

The ground state of the Hamiltonian equation (79) is then a Gaussian state [36, 37] in the

sense that its characteristic function χρ(z)= tr[ρ̂Ŵz], where Ŵz = eizT σ R̂ is the Weyl operator,

is Gaussian, i.e.

χρ(z)= χρ(0)e
−1/4zT σ T γ σ z+DT z, (80)



where γ j,k = 2Re[R̂ j R̂kρ̂] and D = σ tr[R̂ρ̂]. The density operator may then be recovered via

ρ̂ = 1

(2π)n

∫

d2nzχρ(−z)Ŵz. (81)

For the ground state the first moments vanish due to the reflection symmetry of the Hamiltonian.

Therefore, the ground state is fully characterized by the covariance matrix γ , which is defined

as γ j,k = 2Re[R̂ j R̂kρ̂], where we have explicitly used the fact that the first moments vanish.

An explicit computation reveals that the covariance matrix of the ground state of Hamiltonian

equation (79) is given by γ = V−1/2 ⊕ V 1/2 [35].

For the following proof of equation (63), we will bound the trace norm by the quantum

relative entropy using [38].

Property 1. For all density operators σ̂ , ρ̂ we have S(σ̂ ‖ ρ̂)> 1

2
(tr|σ̂ − ρ̂|1)2 and S(σ̂AB‖σ̂A ⊗

σ̂B)= S(σ̂A ⊗ σ̂B)− S(σ̂AB).

The entropy of a Gaussian state is determined by the symplectic eigenvalues {µ j} of γ that

are simply the standard eigenvalues of the iγ σ . We then find [37]

S(ρ̂)=
N
∑

j=1

f (µ j), (82)

where

f (x)= x + 1

2
log2

x + 1

2
− x − 1

2
log2

x − 1

2
. (83)

In the following proof, we will need to compute reduced density matrices. On the level of

covariance matrices this is particularly easy as the covariance matrix of a sub-system A is

obtained simply by removing all entries referring to operators in the complement of A.

Before we proceed to the proof of property equation (63) we first derive a useful lemma

that extends Fannes inequality to Gaussian states. Fannes showed [30] that for d-dimensional

systems and1= tr|ρ̂− σ̂ |6 1/e, we find |S(ρ̂)− S(σ̂ )|61log d −1log1. Obviously, in this

form the theorem cannot be extended to infinite dimensional continuous variable systems as

this would imply d → ∞ which renders the upper bound trivial. Considering Gaussian states

however it is possible to derive a more useful Fannes-type inequality.

Lemma 1 (Bosons). Given two N-mode Gaussian states ρ̂i characterized by covariance

matrices γi with symplectic eigenvalues {µ j

i } j=1,...,N that satisfy max j |µ j

1 −µ j

2|6 B, where

B ≈ 0.176 230 08 is the non-zero solution of (k + 2) log2(k + 2)+ k log2k = 2, we find

|S(ρ̂1)− S(ρ̂2)|6
N
∑

j=1

−
∣

∣

∣
µ

j

1 −µ j

2

∣

∣

∣
log2

∣

∣

∣
µ

j

1 −µ j

2

∣

∣

∣
61log2N −1log1, (84)

where 1=
∑N

j=1 |µ j

1 −µ j

2|.

Proof. A Gaussian state is a valid quantum mechanical state exactly if it satisfies the uncertainty

relations γ + iσ > 0. This implies µ
j

i > 1 for all i and j . To bound the entropy equation (82) we

note that for f (x) as defined in equation (83) we have

lim
x→1

[ f (x + k)− f (x)+ klog2k]6 0 for k 6 B (85)



and that ∀x > 1 and k > 0 we find d

dx
[ f (x + k)− f (x)+ klog2k]6 0. Thus, we have 06

f (x + k)− f (x)6−k log2k for all x > 1 and k 6 B. Inserting this into the entropy formula

equation (82), we then find the first inequality in lemma 1. The second inequality is obtained

from the fact that the entropy of any probability distribution with N nonzero probabilities is

bounded by log2N . This completes the proof. ⊓⊔
It is worth noting that an analogous theorem may also be proven for the fermionic case9.

Theorem 1. In an infinite chain of harmonic oscillators in its ground state we pick two blocks,

each consisting of L contiguous harmonic oscillators. The two blocks are separated from each

other by d harmonic oscillators. Then we find that

‖ρAB − ρA ⊗ ρB‖1 6 C(L)e−αd (86)

for some polynomial C(L) and constant α independent of d.

Proof. We will proceed using lemma 1 to bound the entropy difference S(ρ̂AB‖ρ̂A ⊗ ρ̂B)=
S(0̂ρ A ⊗ ρ̂B)− S(ρ̂AB). To this end we need to bound the difference in symplectic eigenvalues

of the covariance matrices corresponding to ρA ⊗ ρB and ρAB . Property 1 then yields the desired

result.

We denote with γground the ground state of the complete system and write the covariance

matrix of the two blocks of harmonic oscillators (both of length L) in the (x1, p1, x2, p2, . . . )

ordering as

Ŵ =
(

ŴA ŴAB

ŴT
AB ŴB

)

. (87)

Given that the potential matrix V is banded we know from [39]–[41] that the entries of γground

decrease exponentially in the distance d from the main diagonal. Therefore, the entries of ŴAB

are exponentially decreasing with distance from the lower left corner whose entry is of the order

C1e−αd .

We employ theorem 8.3.9 of [42] which states that

‖|λ↓
i (A)− λ

↓
i (B)|‖6

√

cond(S)cond(T )‖|A− B| ‖ (88)

9 Indeed we find

Lemma 2 (Fermions): Given two N-mode Gaussian states ρi characterized by fermionic covariance matrices Ŵi

and fermionic symplectic eigenvalues µ
j

i that satisfy max j |µ j

1 −µ j

2|6 0.6 then we find

|S(ρ1)− S(ρ2)|6 2

N
∑

j=1

−|µ j

1 −µ j

2|log2|µ
j

1 −µ j

2|6 2(1log2N −1log1) (89)

where 1=
∑N

j=1 |µ j

1 −µ j

2|.

Proof. Remember that the fermionic symplectic eigenvalues |µ j

i |6 1 and that the entropy is given by S(ρ)=
∑N

j=1 e(ν j ) with f (x)= − 1+x
2

log2
1+x

2
− 1−x

2
log2

1−x
2

. Straightforward analysis shows that for |x − y|6 0.5 and

06 x, y 6 1 we have | − x log2x + ylog2y|6−|x − y|log2|x − y| for all 06 x, y 6 1. Thus for all x, y ∈ [0, 1]

we find that | f (x)− f (y)|6 2|x − y|log2
|x−y|

2
. Inserting this into the entropy formula yields the first inequality in

lemma 2. The second one follows in the same way as that of lemma 2. This completes the proof. ⊓⊔



for every unitarily invariant norm and where S (T ) diagonalize A(B) and cond(S)=
‖S‖ · ‖S−1‖ is the condition number. Given that the matrix iŴσ can be diagonalized by a matrix

of the form UŴ−1/2 we find

‖|(µi
1)

↓ − (µi
2)

↓|‖6 (cond(Ŵ)cond(ŴA ⊕ŴB))
1/4 ‖ |σ(Ŵ−ŴA ⊕ŴB)| ‖ . (90)

By the pinching inequality for Hermitean matrices [42] C(A)≺ A we find cond(ŴA ⊕
ŴB) and cond(Ŵ)6 cond(γground). For the trace norm we then find

‖(µi
1)

↓ − (µi
2)

↓‖1 6 2(cond(γground))
1/2‖σŴAB‖1. (91)

Then ‖ŴAB‖1 6 2L‖ŴAB‖2 and ‖σ‖1 = 4L yield

‖(µi
1)

↓ − (µi
2)

↓‖1 6 16
√

cond(γground)L
2C2e−αd (92)

for constants α and C2 independent of L . Inserting this into lemma 1 finishes the proof. ⊓⊔
As with matrix product states, application of the triangular inequality then yields

equation (63).

9. Proof of property equation (64) for various states

9.1. Matrix product or finitely correlated states

We consider the same states as in section 8 and proceed similarly. We begin by computing

ρll+1(l) = tranc{T lQ1(l)(σ )}, ρl
l6(1+δ)

= tranc{T lQl6(1+δ)−l(σ )}.
Applying equation (73) again we can write the powers of Q as

Q1(l) =6 +1(l)kλ
1(l)

2 21, Ql6(1+δ)−l =6 + (l7)kλl
5

2 22,

for two bounded operators21 and 22. In this equation in order to unclutter the notation we have

replaced the first l6(1 + δ)− l with the weaker estimate l7, and the second one (in the exponent)

by the weaker estimate l5—in fact their form is not particularly important for what follows.

Putting these expressions for the powers ofQ into the expressions for the states, we find that for

sufficiently large l:

‖ρll+1(l) − ρll6(1+δ)
‖6 C × λ1(l)2 , (93)

where C is a positive constant. Picking 1(l)= l1/2, for example, hence allows us to satisfy all

the required conditions.

9.2. Bosonic systems

As for condition equation (63), we consider the ground state for Hamiltonians that are quadratic

in the canonical coordinates x̂ and p̂ and k-banded potential matrices V . The ground state is

then given by γ = V−1/2 ⊕ V 1/2.

Let us now consider ρ
(1)
l := ρll+1(l) with covariance matrix γ1 and ρ

(2)
l := ρl

l6(1+δ)
with

covariance matrix γ2, i.e. the reduced density matrices of a block of l spins in a chain of l +1(l)

harmonic oscillators (described by covariance matrix Ŵ1) and in a chain of l6(1 + δ) harmonic

oscillators (described by covariance matrix Ŵ2), respectively. Now, we will demonstrate that the



covariance matrices γ1 and γ2 converge to each other in the limit l → ∞. In the following we

will choose, for our convenience, L sufficiently large to ensure that l +1(l)6 l6(1 + δ).

Given a k-banded potential matrix V let us choose a number r =1(l)/k. Then V r is

1(l)-banded. Denote with F the composition of first applying an analytic matrix function to

a covariance matrix and subsequently picking the sub-block describing the reduced state of a

contiguous block of L harmonic oscillators. Analogously, denote with pr the composition of

first applying the r th matrix power followed by picking a sub-block as before.

Then we conclude pr(Ŵ1)= pr(Ŵ2) due to the k-bandedness of V . Furthermore, by

Bernsteins theorem (see footnote 10 for a short introduction) we then find

‖F(Ŵ1)− F(Ŵ2)‖6 ‖F(Ŵ1)− pr(Ŵ1)‖ + ‖pr(Ŵ2)− F(Ŵ2)‖6
4M(χ)

χ r(χ − 1)
.

Because χ > 1 (see footnote 10) this tends to zero with 1(L)→ ∞. Choosing F(A)= A1/2

and F(A)= A−1/2 allows us then to conclude that the difference of the covariance matrices γ1

and γ2 is bounded by an exponentially decreasing function in 1(L).

To continue, we proceed in two steps. First, we show that the above property implies the

weak convergence of the two reduced density matrices. Then, we use this to show that this is

already enough to imply the trace norm convergence.

Lemma 3. Given two Gaussian states ρ
(1)
L and ρ

(2)
L above with vanishing displacement and

covariance matrices γ
(1)
L and γ

(2)
L such that limL→∞‖γ (1)L − γ (2)L ‖ = 0 then for any sequence

XL , where ‖XL‖1 6 C, with finite rank we have limL→∞tr[(ρ
(1)
L − ρ(2)L )XL] = 0.

Proof. Given that the Hamiltonian of the harmonic chain is gapped we find that γ
(i)

L > c for

some constant c < 1 independent of L. Then choose ‖γ (1)L − γ (2)L ‖6 ǫ < c 6 1, |1 − e−x |6 2|x |

10 Bernstein’s theorem concerns the approximation of functions by polynomials [43]. Given the set Pr of

polynomials of degree r or less with real coefficients. For a continuous function F on the interval [ − 1, 1] the

best approximation error is defined as

Er ( f )= inf{‖F − p‖∞ : p ∈ Pr }, (94)

where

‖F − p‖∞ = max
−16x61

|F(x)− p(x)|. (95)

Now assume that F is analytic in an ellipse Eχ with foci −1 and 1 and with half axes α > 1 and β > 0. Then

χ > α +β. Then we have

Theorem (Bernstein). Let the function F be analytic in the interior of Eχ with χ > 1 and continuous on Eχ . In

addition suppose that F(z) is real for real z. Then

Er (F)6
2M(χ)

χ r (χ − 1)
(96)

where

M(χ)= max
z∈Eχ

|F(z)|. (97)

It is straightforward to adapt the theorem to other intervals and we will thus apply this theorem for all intervals.



for x 6 1, |1 − e−x |6 e|x | for all x and XL as above. We find

∣

∣tr
[(

ρ(1) − ρ(2)
)

XL

]
∣

∣= 1

(2π)n
|
∫

d2nz tr[W (−z)XL]
(

χ
(1)
L (z)−χ

(2)
L (z)

)
∣

∣

∣

6
‖XL‖1

(2π)n

∫

d2nz e−1/4zT γ
(1)
L z
∣

∣

∣
1 − e−1/4zT (γ

(2)
L −γ (1)L )z

∣

∣

∣

6
‖XL‖1

(2π)n

∫

|z|62ǫ−1/4

d2nz e−1/4zT γ
(1)
L z
∣

∣

∣
1 − e−1/4zT (γ

(2)
L −γ (1)L )z

∣

∣

∣

+
‖XL‖1

(2π)n

∫

|z|>2ǫ−1/4

d2nz e−1/4zT γ
(1)
L z
∣

∣

∣
1 − e−1/4zT (γ

(2)
L −γ (1)L )z

∣

∣

∣

6
‖XL‖1

4(2π)n

∫

|z|62ǫ−1/4

d2nz e−1/4zT γ
(1)
L z|z|2ǫ

+
‖XL‖1

(2π)n

∫

|z|>2ǫ−1/4

d2nz e−1/4zT γ
(1)
L z
∣

∣

∣
1 − e−1/4zT (γ

(2)
L −γ (1)L )z

∣

∣

∣

6
‖XL‖1ǫ

1/2

(2π)n

∫

|z|62ǫ−1/4

d2nz e−1/4zT γ
(1)
L z

+
‖XL‖1

(2π)n

∫

|z|>2ǫ−1/4

d2nz e−1/4zT γ
(1)
L ze1/4ǫ|z|2

6 ‖XL‖1

(

√

ǫ

det γ
(1)
L

+ O
(

ǫ1/4e−ǫ−1/2‖(Ŵ1−ǫ)‖
)

)

,

where the last line follows from upper bounds on the error function. Note that the first term

on the right-hand side is proportional to trρ2
L which is bounded by a constant independent of

L because −log2 trρ2
L 6 S(ρL) and the harmonic chain Hamiltonian obeys an entropy-area

law [35]. Thus for sufficiently small ǫ the right-hand side becomes arbitrarily small. This

concludes the proof of lemma 3. ⊓⊔
Now we need to prove that weak convergence implies trace-norm convergence for

harmonic chains. The following proof will use in an essential way the fact that the ground state

of bosonic Hamiltonians that are quadratic in the canonical operators obey an area law [35, 39].

Lemma 4. For the ground state of a bosonic Hamiltonian H that is quadratic in the canonical

coordinates the limit limL→∞tr[(ρ
(1)
L − ρ(2)L )XL] = 0 for any sequence XL , with ‖XL‖1 6 K,

with finite rank already implies trace norm convergence limL→∞‖ρ(1)L − ρ(2)L ‖1 = 0.

Proof. Given 0< ǫ < 1. To begin with we write

‖ρ(1)L − ρ(2)L ‖1 6 ‖ρ(1)L − Pρ
(1)
L P‖1 + ‖Pρ(1)L P − Pρ

(2)
L P‖1 + ‖Pρ(2)L P − ρ(2)L ‖1, (98)

for some P that is yet to be determined. We now would like to establish the existence of a

spectral projection P of finite rank such that ‖ρ(i)L − Pρ
(i)

L P‖1 < ǫ. In other words, we aim

to project onto the subspace made up of the eigenvectors corresponding to the km largest

eigenvalues of ρ
(i)

L . We argue that such a projection P
(i)

L exists for each ρ
(i)

L . Then one may

project onto the subspace spanned by the subspaces determined by P
(1)
L and P

(2)
L which defines

PL . What we need is that km is bounded independent of L . To see this, it is important to note

that the ground state of H satisfies an area law, i.e. in the 1D setting there is a constant C such



that S(ρ
(i)

L )6 C for all L . Let us denote by {λ↓
k }k=0,...,∞ the decreasingly ordered eigenvalues of

ρ
(1)
L . Note that for all k we have λ

↓
k 6

1

k
by trρ

(i)

L = 1. Thus we find

C >−
∞
∑

k=km

λ
↓
k log2λ

↓
k > log(km)

∞
∑

k=km

λ
↓
k . (99)

Therefore, we find for the choice km > eC/ǫ that
∑∞

k=km
λ

↓
k 6 ǫ for any choice of L . Thus PL

can be chosen to be a rank km projector. Thus PL is bounded in the trace norm but the subspace

onto which it projects will generally depend on L . Note further that with the above PL the weak

convergence limL→∞tr[(ρ
(1)
L − ρ(2)L )XL] = 0 implies that for sufficiently large L we have that

‖PLρ
(1)
L PL − PLρ

(2)
L PL‖1 < ǫ. Thus, we find that for any ǫ > 0 and sufficiently large L we have

‖ρ(1)L − ρ(2)L ‖1 6 3ǫ thus establishing the required trace norm convergence. ⊓⊔

10. Generalizations to other interactions

It is natural to ask whether the approach that we have adopted can enable progress to be made for

unitary interactions other than controlled-phase gates (or their higher dimensional analogues).

Some generalizations are immediate. For instance, given any channels that are probabilistic

applications of unitaries, where the unitaries are controlled on different classical or quantum

basis states of the environment, expression (16) can easily be shown to be an explicit lower

bound to the regularized coherent information. Hence, if the environment state has sufficiently

decaying correlations, expression (16) will also be a lower bound to channel capacity. In a

similar manner it is likely that any channel whose capacity can be bounded by such simple

entropic expressions will benefit from similar insights.

11. Discussion and conclusions

We have considered models of correlated error inspired by many-body physics, with the aim

of demonstrating behaviour in the capacity that parallels similar behaviour in the associated

many-body systems. In this context, a number of interesting questions which require further

investigation.

The first of these questions regards our initial motivation—to find models of correlated

error that display interesting non-analytic behaviour. However, non-analytic behaviour in many-

body systems arises only in the thermodynamic limit, and so our results unfortunately do not

really explain why the non-analyticities that have been observed in papers such as [5]–[7] occur

for finite truncations of the channel. Furthermore, the quest for ‘genuine’ non-analyticity is

actually open to some debate—by redefining the parameters defining the channel, it is always

possible to remove any non-analytic behaviour. However, we hope that our work may help to

shed light on non-analytic behaviour for physically relevant parameter choices such as magnetic

fields and inter-particle couplings11. In realistic models of correlated error it is such forms of

parametrization that will probably be most important.

11 In this context it may be important to note that this is also an issue in the definition of phase transitions. Some

definitions of phase transitions avoid this problem by not relying explicitly on any parametrization, but instead by

relying on the divergence of correlation functions or the non-uniqueness of a ‘well-defined’ thermal state [11, 17].

Such definitions avoid the problems of defining non-analyticity, and may well have analogues in correlated error

channels.



It will also be interesting to see how far the approach adopted here can be extended to other

possible system environment interactions. The channels that we have investigated above are all

of a very specific kind—as random unitary channels, they do not permit quantum information to

be transmitted from one system particle to another via the environment. More general channels

with memory will have this property, and so it will be interesting to understand what effects this

qualitative difference can make.

Another open question is whether the conditions (63) and (64) can be established for wider

families of many-body system. In addition to the systems for which we have demonstrated these

conditions, recent work by Hastings [31] demonstrates that they hold for the ground states of

many fermionic systems too. His approach raises interesting questions concerning topological

invariants which may have further significance for the problems considered in this paper.

Finally, it is important to note that the connections made in [10] and this work are actually

quite natural—entropies and correlations have a significant role in statistical physics, and so

quantum channel capacities with correlated error should have some connection to many-body

physics. However, it would be nice to know if there is a deeper link, perhaps through a more

direct connection between coding theory and the physics of physical systems such as spin-

chains.
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