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Abstract. We consider the possibility of adding noise to a quantum circuit
to make it efficiently simulatable classically. In previous works, this approach
has been used to derive upper bounds to fault tolerance thresholds—usually by
identifying a privileged resource, such as an entangling gate or a non-Clifford
operation, and then deriving the noise levels required to make it ‘unprivileged’.
In this work, we consider extensions of this approach where noise is added
to Clifford gates too and then ‘commuted’ around until it concentrates on
attacking the non-Clifford resource. While commuting noise around is not
always straightforward, we find that easy instances can be identified in popular
fault tolerance proposals, thereby enabling sharper upper bounds to be derived
in these cases. For instance we find that if we take Knill’s (2005 Nature 434 39)
fault tolerance proposal together with the ability to prepare any possible state
in the XY plane of the Bloch sphere, then not more than 3.69% error-per-gate
noise is sufficient to make it classical, and 13.71% of Knill’s γ noise model
is sufficient. These bounds have been derived without noise being added to the
decoding parts of the circuits. Introducing such noise in a toy example suggests
that the present approach can be optimized further to yield tighter bounds.
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1. Introduction

An important open problem in the field of quantum computation is to understand the effects
of noise on computational power. In particular, for various noise models and various sets
of universal quantum resources, we would like to determine the so-called fault tolerance
threshold [2], the level of noise that we can tolerate in our basic physical components before
we lose the power to perform quantum computation. Most previous work on this question has
focused on the problem of constructing lower bounds to such thresholds (see e.g. [2]). This is
usually achieved by constructing explicit fault-tolerant procedures, and then estimating the level
of noise that these schemes can tolerate. On the other hand the construction of upper bounds has
received comparatively less attention, but has recently been the subject of an increasing number
of investigations.

There are essentially two methods that have been used to derive upper bounds, which
we may loosely describe as ‘classical’ and ‘quantum’ approaches. In classical approaches
one tries to determine the noise levels required such that the noisy quantum computer can be
efficiently simulated on a classical computer [3]–[5], [8]–[10]. In quantum approaches one tries
to show that above a certain level of noise the output is bounded away from ideal in some
way [6, 7], [10]–[12]. A number of investigations along these lines have resulted in upper
bound estimates relevant to various architectures and noise models under varying degrees of
assumption and rigour. The two approaches could ultimately be of independent interest, as it is
possible that for realistic noise models an ‘intermediate’ form of computation could exist that is
not as powerful as a quantum computer, but is more powerful than the classical.

In this work, we follow a path related to the ‘magic state’ question and generalizations
[4, 5, 9], [18]–[21] and consider classical threshold upper bounds for a specific class of
fault-tolerant quantum computational schemes—those built around a core set of Clifford
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resources [13] such as the CNOT, Pauli rotations, Hadamard and preparation/measurement in
Pauli operator eigenbases. Any device consisting of such Clifford operations can be efficiently
simulated classically, and so to perform quantum computation an additional resource is needed.
Common choices include phase gates of the form

U (θ) := |0〉〈0| + exp iθ |1〉〈1|, (1)

or a supply of single-qubit states such as

|θ〉 :=
1

√
2
(|0〉 + eiθ

|1〉) (2)

that are not eigenstates of Pauli operators.
It is significant for our present discussion that devices built from Clifford operations

alone can be efficiently simulated classically. This is the content of the Gottesman–Knill
theorem [13, 14]. The Gottesman–Knill theorem is interesting as in many other respects Clifford
operations exhibit a great deal of non-classicality—for instance they can be used to demonstrate
the GHZ paradox and may generate the long-range entanglement that is considered to be
a precondition for efficient quantum computation [15]. Furthermore, the entanglement that
Clifford operations generate is sufficient for quantum computation—to build a full quantum
computer you only need to add the ability to perform single-qubit operations to the Clifford set.

The Gottesman—Knill theorem is important for this work as it can be used [4, 5] to
construct classical threshold bounds using the following simple approach. Consider a Clifford-
based architecture that is made universal by the addition of a non-Clifford resource, which we
refer to as R. If one could determine a noise level sufficient to turn R into an operation that
lies in the convex hull of Clifford operations, then this noise level provides an upper bound
to the fault tolerance threshold for those architectures, as such a noisy device can be efficiently
simulated classically6. Although one would ideally like to derive threshold bounds that are valid
for a wider variety of possible architectures than those based upon Clifford operations, focussing
on such architectures is nevertheless quite relevant, as most lower bounds have been derived for
Clifford-based schemes due to their significance for quantum error correction [14].

Although a number of interesting threshold bounds can be derived with this approach, the
noise models considered in [4, 5] are in fact relatively weak because the Clifford operations are
taken to be entirely noise free. This naturally leads to the question of whether the bounds can be
improved by considering the (often more realistic) situation in which the Clifford operations are
also subject to noise7. In this work we argue that this is indeed the case. By a straightforward
modification—allowing the Clifford operations to be noisy, and then ‘commuting’ the noise
onto the non-Clifford operations—we argue that the previous bounds of [4, 5] can be improved
much further for some important families of fault-tolerant quantum computation.

‘Commuting’ noise around a circuit is not always straightforward, as when noise is moved
through entangling gates it can lead to unmanageable error correlations between different qubits.

6 In principle, this approach can also be applied to more general architectures where all resources are non-
Clifford—one can ask for the noise required to turn all the basic components into probabilistic applications of
Clifford operations.
7 From an experimental point of view, this is usually a natural assumption, as in many implementations of quantum
gates there is little reason to suggest that a Clifford gate should suffer far less noise than a non-Clifford gate.
However, in some physical situations the Clifford operations can be much more strongly protected, and such
situations were a motivation expressed by the authors of [9].
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Table 1. A summary of upper bounds presented in this work. ‘Injection’ refers
to teleportation state-injection. ‘NC’ means non-Clifford.

NC resources Method Noise model Upper bound (%)

Phase gates/states Any Independent N Z
p 7.96

Phase gates/states Any EPG 10.41
All gates Any Independent depolarizing 26.05
Phase gates Injection Knill 9.59
Phase states Injection Knill 13.71
Phase gates Injection EPG 3.01
Phase states Injection EPG 3.69
All gates Injection Knill 15.19
All states Injection Knill 21.78
All gates Injection EPG 5.03
All states Injection EPG 6.31

Hence, in this paper, we analyse only comparatively easy instances where these correlations can
be made to disappear or may be accounted for easily. Fortunately, however, it turns out that
the teleportation circuit is one such ‘easy’ instance, and so the approach works well for the
various schemes (including the high-threshold proposal of Knill [1]), which use teleportation
as a primitive for ‘injecting’ non-Clifford states into the computation to make it universal. In
such cases the problem often reduces to simple geometrical considerations of the Bloch sphere.
We expect that the results obtained here may be improved by developing more sophisticated
techniques to tackle the correlations arising in more general situations.

A summary of the upper bounds obtained in this paper is given in table 1. In some cases
they are not too far from conjectured lower bounds for some proposed schemes.

2. Basic definitions and noise models

There are a variety of noise types and models that we will consider in this work. In this
section, we define some of these noise models, and establish some notation. We will only
consider computational models using qubits. We will also be only considering stochastic noise
models, where at each stage the ideal operation fails with some probability—we do not consider
‘coherent’ errors here.

• Clifford operations. Consider the ‘Clifford group’ of unitaries, defined for any number
of qubits, which is generated by CNOTs, Hadamards, and the ‘S’ gate S := |0〉〈0| +
i|1〉〈1|. Augment this group with measurements in the Pauli X, Y, Z eigenbases, and
the ability to prepare any Pauli eigenstate. Any physical operation that can be generated
by probabilistic application of these resources (where the probabilities can be efficiently
sampled classically) will be called a Clifford operation.

• Phase gates. Phase gates, denoted U (θ), are defined as

U (θ) := |0〉〈0| + exp(iθ)|1〉〈1|. (3)

We use the same symbol U to refer to the unitary whether we consider it as a transformation
on the set of pure state vectors (i.e. as U |ψ〉), or by conjugation on the set of density
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matrices (i.e. as UρU †). Most of the bounds derived for phases gates are also valid for
phase rotations in the X , Y bases too, provided that the error models are changed in the
appropriate way.

• Phase states. Phase states, denoted |θ〉, are defined as

|θ〉 :=
1

√
2
(|0〉 + exp(iθ)|1〉) . (4)

They lie in the plane of the Bloch sphere containing the Pauli X, Y eigenstates. Most of the
bounds derived for phase states are also valid for pure states in the Y, Z and X, Z planes,
provided that the error models are changed in the appropriate way. In fact the states used
explicitly in [1, 23] are sometimes from these other planes.

• Probabilistic application of a transformation Q. Let Q be a quantum operation acting on
a quantum system. Q could be a unitary or a completely positive (CP) map. We define N Q

t

to be the quantum operation ‘with probability (1 − t) apply the identity operation to the
system and with probability t apply the Q operation’, i.e.

N Q
t (ρ)= (1 − t)ρ + t Q(ρ). (5)

Usually we will consider Q to be a Pauli operation, or some form of depolarizing operation.
• Opposite noise. Consider a known, given, qubit state σ . Define ψ⊥

σ to be the pure state
in the polar opposite direction to σ in the Bloch sphere. We define Oσ

t to be the single-
qubit operation ‘with probability (1 − t) apply the identity operation to the system and
with probability t throw it away and replace it with the pure state in the opposite direction
to σ in the Bloch sphere’, i.e.

Oσ
t (ρ)= (1 − t)ρ + tψ⊥

σ . (6)

This operation will be used to construct error-per-gate (EPG, see below) noise upper
bounds. Note that it is a valid quantum operation as σ is known and fixed, and does not
depend upon ρ.

• Knill’s noise model. The noise model defined in the paper by Knill [1] is parametrized
by a noise strength γ in the following way: a preparation of a qubit state ψ prepares the
orthogonal pure state with probability 4γ /15, a measurement of the Pauli Z operator is
preceded by a Pauli X rotation with probability 4γ /15, a measurement of the Pauli X
operator is preceded by a Pauli Z rotation with probability 4γ /15, a single-qubit unitary
is followed by one of the Pauli X, Y, Z rotations each with probability 4γ /15, a CNOT
is followed by one of the 15 non-Identity Pauli products (I ⊗ X, Y ⊗ I, Z ⊗ X , etc) each
with probability γ /15.

• Independent depolarizing noise, with strength t. After every nontrivial unitary operation,
and before each nontrivial measurement, apply the noisy operation N D

t , where D is the
totally depolarizing operation:

D(ρ)=
1

4
(ρ + XρX + YρY + ZρZ) (7)

• Simultaneous depolarizing noise, with strength t . After each nontrivial gate acting on
k qubits, each possible Pauli product (including the Identity) is applied to those qubits
with probability t/(4n), with the remaining probability being taken up by the Identity
transformation. In particular this means that after a CNOT, for example, both qubits are
‘jointly depolarized’ rather than independently on each wire.
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• EPG. Probabilistic error-per-gate noise, with strength t. Each operation (including
memory steps required while waiting for measurement outcomes elsewhere) fails with
probability t , but the precise manner of failure is not specified other than being
probabilistic—so we are free to choose the operation that occurs in the case of failure. In
particular the output of a k-qubit gate can undergo some correlated, joint, error. However,
correlations in the noise affecting non-interacting qubits are not allowed in EPG, and we
do not allow the noise to be conditioned on classical measurement outcomes that have
occurred during post-selection elsewhere.

Although the EPG model may seem a little adversarial, it is in fact weaker than many of
the noise models considered in more rigorous lower bound estimates, such as [16, 17]. In the
local stochastic noise model [16], for example, a form of weak correlation is admitted, and this
is where it differs from EPG. However, upper bounds for EPG models will still of course be
valid upper bounds for all stronger noise models.

3. Dephasing of general phase resource circuits

To illustrate the basic approach we begin by analysing a particularly simple scenario where the
non-Clifford resource and noise model are picked such that the noise can be commuted quite
straightforwardly from the Clifford gates to the non-Clifford operations.

Suppose that we apply dephasing noise to Clifford-based architectures that are made
universal by the addition of phase gates. In particular let us assume the following noise model:
each qubit undergoes a dephasing operation of the form N Z

p (see equation (5)) after every
nontrivial gate, after every qubit state initialization, and before every measurement. Because
dephasing commutes with phase gates the analysis turns out to be especially simple. This not
only leads to very simple calculations but also allows us to consider the most general Clifford-
based architectures with phase resources, thereby leading to the smallest upper bounds that can
be proven using this approach for such architectures. We present the argument for phase gates,
but with minor modification it can be shown to hold for any combination of phase gates or phase
states.

In [4] it was shown that if Clifford operations are augmented with the ability to do single-
qubit phase gates and if each non-Clifford gate U (θ) in the circuit is immediately followed by
N Z

p , then roughly p ∼ 14.6% of noise is sufficient to make the circuit classically tractable (this
is regardless of which phase gates are used). However, let us now consider how this result may
be applied to more realistic noise models where the Clifford operations are also subject to noise.

On any given wire, the neighbourhood of each non-Clifford gate can always be taken to
have the form,

CU r C, (8)

where C denotes a Clifford operation (which may involve more than one qubit, and could be
a state preparation), and U r denotes r applications of some non-Clifford phase-gate U (it does
not matter if all these r phase gates are the same or not). The real, noisy version of this wire will
be (we consider time increasing from left to right)

CN Z
p (UN Z

p )
r CN Z

p . (9)
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Now, as our noise operation N Z
p commutes with the Us, which also commute with each other,

this equation reduces to

CU ′ (N Z
p )

r+1CN Z
p , (10)

where we now rewrite U ′
= U r , which is also a phase gate. This is a circuit where the leftmost

Clifford operation is perfect, but we now have r + 1 lots of noise attacking the U ′ non-Clifford
gate. Note that it does not actually matter if all the U gates were all the same or not; we can still
commute the noise and multiply the Us to give a U ′ that is still a phase gate. It also does not
affect the argument if the C operations are in fact qubit preparations or measurements.

With this reordering of the gates and noise we hence see that any circuit of Clifford
operations and phase gates subject to N Z

p noise may be reduced to an equivalent circuit where
every second operation is a (usually ideal) Clifford operation, and the non-Clifford operations
are subject to increased noise. If r = 0 then the wire is already a Clifford operation, and we do
not need to attack it. The worst case from an attacker’s perspective is hence when r + 1 = 2,
i.e. there is only one U between every pair of successive Clifford operations on the same qubit,
in which case we may only attack each phase gate with only two lots of noise. In fact this is
also the most general case—it is not possible to argue that there are more than two lots of noise
attacking each non-Clifford operation, as in principle every second operation on every qubit
wire could be a non-Clifford operation.

We hence may now ask how high p must be for two lots of noise to take an arbitrary phase
rotation U ′ into the set of Clifford operations—this is in contrast to the calculations of [4] that
used only one lot of noise. Solving this problem is a trivial extension of the methods used in [4].
One must solve

(1 − 2p)2 = (1 − 2q) (11)

for p, where q is the minimal noise level required for a single application of the noise. The value
for q found in [4] was

q =
1

2

(
1 −

1
√

2

)
∼ 14.64%. (12)

To make the paper more self-contained, we explain the origin of this value in figure 1. Solving
for p hence gives

p =
1

2

(
1 −

√
1

√
2

)
= 7.96%. (13)

So this result may be summarized as follows: for an architecture based upon Clifford operations,
phase gates, and noise where each qubit undergoes N Z

p independently after every nontrivial gate
acting upon it (or before a measurement), then a noise level of 7.96% is sufficient to make the
circuit tractable classically.

Some authors prefer to use a different parametrization of the dephasing noise model, where
instead of applying N Z

p , one applies the totally dephasing operation ρ → 1/2(ρ + ZρZ) with
probability p̃. The two cases are trivially related, and so the above bound can be re-expressed
for this noise model as

p̃ = 1 −

√
1

√
2

= 15.91%. (14)
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Figure 1. This figure recaps the argument in [4] leading to equation (12). The
set of phase gates can be isometrically represented either as the unit circle
in the complex plane or as the circumference of the XY plane of the Bloch
sphere via the mappings U (θ)↔ exp(iθ)↔ |0〉 + exp(iθ)|1〉. Similarly, convex
mixtures of phase gates map to the interior of the circle—for instance, the total
dephasing operation is represented by the origin of the complex plane or the
maximally mixed state. In such representations the Clifford unitaries I, S :=
U (π/2), Z , S−1 map to the four points shown in the figure, and the Clifford
region is the region inside the square—all operations outside the square can be
shown to be non-Clifford because they take the stabilizer qubit state |0〉 + |1〉

outside the ‘Pauli octahedron’ [9] of the Bloch sphere. Under an unwanted Z
rotation U (π/4) is taken to U (5π/4), and q ∼ 14.64% is given by the smallest
amount of U (5π/4) that must be mixed with U (π/4) to take it into the square.
One can see intuitively from the figure that under Z noise there is no phase gate
more robust than U (π/4). Most of the calculations later in the paper follow from
similar arguments related to the geometry of the Bloch sphere.

These improvements on the bounds of [4] have been possible because noise from a neighbouring
Clifford operation can be shifted on to the non-Clifford resource. It is easy to see that this attack
could lead to improvements for any Clifford-based architecture provided that the noise can be
shifted around the circuit easily. In the example considered above, this ‘shifting’ was possible
because the N Z

p noise commutes with any U (θ). Of course in general the noise models will not
commute with the non-Clifford resource so straightforwardly, but as we shall see later, there are
important examples of fault-tolerance schemes in the literature for which this approach can be
applied quite effectively.

4. Error-per-gate (EPG) bounds for Clifford operation and phase gate or
phase state schemes

The bounds of the previous section apply to a dephasing noise model that is independent of
different physical qubit wires. However, a similar approach can be used to derive a bound
valid for an error-per-gate model, where each nontrivial operation is subject to probabilistic
noise, but different physical qubits undergoing the same multiqubit gate (e.g. a CNOT) can
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Figure 2. A possible scenario in a fault-tolerant circuit.

have correlations in noise at that location in the circuit. The error-per-gate model is weaker than
the ‘local stochastic’ type models that have been adopted in some rigorous estimates of lower
bounds, so upper bounds valid for EPG are also valid upper bounds for a local stochastic model.

In this case the analysis must be changed slightly. A circuit such as that in figure 2 may
occur, where the same Clifford operation, in this case the CNOT, touches two non-Clifford
operations. In such cases the EPG model allows correlated noise across the two qubits (see
noise model definitions), and this correlated noise may not factorize in a way that independently
attacks each of the non-Clifford gates next to the CNOT. However, if we parametrize the EPG
noise strength by p, then in this case at locations a, b we are allowed to choose to apply the noisy
operation N Z

t ⊗ N Z
t where t is chosen so that the overall probability of any error at locations

a, b (of figure 2) together, t2 + 2t (1 − t), is equal to p, i.e.

p = t2 + 2t (1 − t)⇒ t = 1 −
√

1 − p. (15)

Now the noise affecting each non-Clifford operation in circuit 2 is effectively independent. As
in this section we assume the non-Clifford operations to be a phase rotation gate (a similar
argument follows through for preparation of a phase state, with precisely the same numerical
values), our goal is to work out when

(1 − 2p)(1 − 2(1 −
√

1 − p))= 1 − 2q =
1

√
2

(16)

which has the solution for p of

p = 10.41%. (17)

So, under an EPG model, any circuit consisting of noisy Clifford operations and phase states
and phase gates can have a fault tolerance threshold not higher than 10.41%.

5. Independent depolarizing thresholds for general non-Clifford unitaries

Depolarizing noise commutes with all single-qubit unitaries; hence, provided that the non-
Clifford operations are single-qubit unitaries, the above reasoning applies straightforwardly.
In this section, we now allow U to be any non-Clifford single-qubit unitary (although it turns
out that the most robust gate will be the π/8 gate anyway). Let us ask what p is required such
that (where, as before, time increases from left to right, I denotes the identity operation and
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U represents the quantum operation acting by conjugation on density matrices, not just the
unitary matrix itself)

U (N D
p )

2
= U ((1 − p)I + pD)2

= (1 − p)2U + (1 − (1 − p)2)D

is a Clifford operation (the second line of this equation follows from the fact that D2
= DU =

UD = D as D is the depolarizing operation). We may now apply the bound obtained in [5]
(a related result has been derived independently by [8]) to find that the minimal such p satisfies

(1 − p)2 = 1 −
6 − 2

√
2

7
= 100% − 45.31% (18)

hence

p = 1 −

√
1 −

6 − 2
√

2

7
= 26.05%. (19)

This upper bound applies regardless of the single-qubit non-Clifford gates available and the
fault tolerance methods used, provided that the basic gates are Clifford + single-qubit unitaries.
In [5] it is shown that the π/8 gate (i.e. U (π/4)) is the most robust gate to their depolarizing
noise, so in this setting it is also the most robust.

Reichardt [22] has independently previously performed a related analysis for simultaneous
depolarizing noise. The calculations are more difficult because in that case the noise does not
commute straightforwardly. However, it is expected that an analysis of the simultaneous case
would lead to upper bounds of a similar magnitude [22].

6. Specializing to teleportation state-injection schemes

If general bounds are required for architectures involving Clifford and non-Clifford operations,
then it is generally not possible to shift more than two lots of noise on to each non-Clifford
operation. This is because, in principle, every second operation in a given qubit wire could be a
non-Clifford operation.

However, in many important proposals for fault-tolerant quantum computation the non-
Clifford operations are always surrounded by specific configurations of Clifford operations.
This is because non-Clifford operations are often introduced into the computation using very
specific ancilla preparation constructions. For example, one method that we will consider here is
the technique of ‘state-injection’—see figure 3. This method involves firstly creating a physical
non-Clifford qubit, either by direct access to a source of such qubits or by applying a gate such as
the π/8 gate to a suitable Pauli eigenstate. This qubit is then ‘teleported’ into an error correcting
code, by first decoding one half of an encoded Bell pair to the physical level (post-selecting on
no errors), and then performing ordinary teleportation using CNOTs and X, Z measurements.
Because the teleportation circuit immediately around the non-Clifford resource has around 5–7
nontrivial error locations (depending upon the precise model), one can shift up to 7 lots of noise
on to the non-Clifford resource, and obtain much lower upper bounds. By allowing noise at
these locations, and then remodelling this as effective noise acting only upon the non-Clifford
resource, it is possible to strengthen the bounds derived in the previous sections.
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Figure 3. These circuits show two possible state injection settings. The boxes
denote gates, the triangles are either preparation (of the +1 eigenstate) or
measurement in the X, Z bases, and the collection of wires at the bottom left
of each circuit represents the postselected decoding process. The letters ‘nc’
denote ‘non-Clifford’. The top circuit is for scenarios involving single-qubit
preparation as the non-Clifford resource, and the second is for single-qubit gates.
Each diagram has locations numbered from 1 to 6, with the lower figure having
an extra location 7. In the text we use these numbers to define noise models
for both the upper and lower circuits in this figure. For state injection protocols
these circuits represent the only way in which non-Clifford operations enter the
computation.

To illustrate the approach, let us consider what happens when in the top circuit of figure 3;
we apply various types of Pauli errors at locations 1–6. It turns out that the teleportation circuit
has the special property that Pauli errors acting anywhere in the circuit either can be discarded
or can be considered as Pauli errors acting only at location 1. The following arguments explain
why this is the case, by considering how Pauli errors at locations 2–6 can be discarded or
reconsidered as errors effectively acting at location 1.

1. Application of Z at location 6, and no errors elsewhere. Because location 6 is immediately
followed by a Z measurement, this case is essentially equivalent to no error as it is
‘absorbed’ by the measurement.

2. Application of X at location 6, and no errors elsewhere. An X on the target wire commutes
with the CNOT, and so the X can in fact be commuted through to location 4.

3. Application of Pauli error at location 4, and no errors elsewhere. Now because the CNOT
and subsequent X, Z measurements implement a Bell measurement, and because each
projector B onto a Bell state satisfies (P ⊗ I )B(P ⊗ I )= (I ⊗ P)B(I ⊗ P) for any Pauli
operation P , a Pauli P at location 4 is equivalent to a P acting at location 1. Putting this
together with the previous point shows that an X at location 6 is equivalent to an X at
location 1.
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4. Application of Y at location 6, and no errors elsewhere. A Y error as a quantum operation
(not as a matrix) is equivalent to a Z error and an X error. The Z can be absorbed by the Z
measurement on the lower wire, leaving an X error that can be moved to location 1 by the
previous points. Hence a Y at location 6 is equivalent to an X at location 1.

5. Any Pauli errors at locations 4, 5 and 6. Because Pauli matrices either commute or
anticommute, when viewed as quantum operations Pauli errors actually commute with
each other—consider for example the identity X ZρZ X = Z XρX Z . Hence the previous
rules can be applied to any set of Pauli errors acting at locations 5 and 6—effectively re-
expressing them as Pauli errors acting with various probabilities at location 1.

6. Any Pauli errors at locations 2 and 3. Any X errors can be absorbed by the X measurement
on the top wire, and any Z errors can be commuted through the CNOT to location 1.

We consider two variants of the state injection schemes. In state resource variants, the non-
Clifford resource is a pure qubit state as in the top circuit of figure 3; in gate resource variant,
the non-Clifford resource is a single-qubit unitary, as in the bottom circuit of figure 3.

The above rules can be applied to any configuration of Pauli noise at locations 2–6 to shift
it all to location 1, where it can attack the non-Clifford resource. As the non-Clifford resource at
location 1 is effectively a state in the Bloch sphere, we can solve the relatively simple problem
of how much of this noise forces the state to enter the Clifford ‘octahedron’ (cf [9, 18]) formed
from the convex hull of Pauli eigenstates. In the case of upper bounds for an EPG model, we are
also free to try to pick the most adversarial noise we can within the EPG constraints. Consider
a pure Bloch vectorx

y
z

 (20)

in the positive octant of the Bloch sphere (i.e. x, y, z > 0). A Z error flips the sign of x, y, and
an X error flips the sign of y, z. Our goal is to find the minimal noise, for a given noise model,
which takes the input Bloch vector to an output one

Noise :

x
y
z

→

x ′

y′

z′

 , (21)

satisfying x ′ + y′ + z′
= 1, which is the equation of the face of the octahedron in the positive

octant (see e.g. figure 4).

7. Bounds for the Knill noise model and teleportation state-injection, for phase state and
phase gate resources

To be perfectly clear, it is important to specify precisely how we apply Knill’s noise model
to the circuits in figure 3. In the top circuit of figure 3 we apply: a Z at locations 1 and 3
with probability 4γ /15; an X at location 6 with probability 4γ /15; and at locations 2 and 5
considered together we apply each of the 15 non-identity pairs of operators chosen from I, X, Y
and Z , each pair with probability γ /15. Note that we have kept location 4 error free. The noise
at location 4 will be determined by the decoding circuit that feeds it, and so in order to obtain
general bounds independent of the codes used, we are adopting a noise model that is strictly
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Figure 4. A two-dimensional projection of the Bloch sphere. The goal of the
calculations in this paper is to determine the noise strength required for an input
state to enter the octahedron formed from the convex hull of the Pauli eigenstates.

weaker than Knill’s. Later we will discuss the effect that noise in the decoding circuits might
have.

In the bottom circuit of figure 3, on the other hand, we apply the noise model: at 3 and 7
we apply a Z with probability 4γ /15; at 6, an X with probability 4γ /15; at 1, we apply an X, Y
and Z , each with probability 4γ /15; and at locations 2 and 5 considered together, we apply each
of the 15 non-identity pairs of operators chosen from I, X, Y and Z , each pair with probability
γ /15. Again we keep location 4 error free.

Using this noise model leads to the following effective transformation of the input Bloch
vector: x ′

y′

z′

=

(
1 −

16γ

15

)n (
1 −

8γ

15

) (1 − 8γ /15)x
(1 − 8γ /15)2 y

z

 ,
where n = 1 for the top circuit of figure 3, and n = 2 for the lower circuit of figure 3. Our goal is
hence to determine, for a given input resource, the minimal γ such that the output Bloch vector
lies on the face of the octahedron. This involves finding the least positive root of a polynomial,
which can be done rapidly using standard mathematical software.

For example, if we assume that the ideal state entering location 1 in both circuits is |π/4〉,
either because that is the state prepared or because the non-Clifford unitary is the π/8 gate, then
we find the solution

(1 − 16γ /15)(1 − 8γ /15)2(1 + (1 − 8γ /15))=
√

2

⇒ γ ∼ 13.6861% (22)

for the top circuit of figure 3, and

(1 − 16γ /15)2(1 − 8γ /15)2(1 + (1 − 8γ /15))=
√

2

⇒ γ ∼ 9.5858% (23)
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for the lower circuit of figure 3. Similar equations can be derived and solved for any possible
phase gate and phase state resource. It is not difficult to solve for the minimal γ that leads to
an output vector on the face of the octahedron. Numerically scanning through these solutions
suggests that the |π/4〉 and U (π/4) resources are not actually the most robust non-Clifford
phase state or phase gate resources in this setting, although they are very close. If we allow all
phase state and phase gate resources, respectively, the upper bounds become

γ ∼ 13.71% (24)

for phase states, and

γ ∼ 9.59% (25)

for phase gates. Later we present the values obtained if any single-qubit state or gate is permitted
as the non-Clifford resource.

8. Bounds for an error-per-gate (EPG) noise model and for phase gate or phase state
teleportation state injection

To obtain upper bounds for an EPG model, we select noise that appears to be as detrimental as
possible, yet sufficiently simple to analyse. It is quite likely that the noise we pick at each
location is not the most detrimental (in the sense of pulling the teleportation circuit into a
Clifford operation) within the EPG constraint, but this would require further analysis.

We choose the following noise for the top circuit of figure 3. Assume that the input non-
Clifford state is |θ〉. Apply O |θ〉〈θ |

p at location 1; N Z
p at locations 3 and 4; N X

p at location 6; and
replace the CNOT with O |θ〉〈θ |

p (see equation (6)) on the top wire followed by a CNOT 8. This
gives the following transformation on the input Bloch vector (which has z = 0 as it is a phase
state): (

x
y

)
→ (1 − 2p)2((1 − p)(1 − 2p)− p)

(
x

(1 − 2p)y

)
.

For an input state |θ = π/4〉, the minimal p such that the output Bloch vector lies on the face of
the octahedron is

p = 3.68124%. (26)

Numerics again suggest that |θ = π/4〉 is not the most robust state in this setting, and in fact

p = 3.69% (27)

is a noise level sufficient to take all possible phase states into the octahedron.
For the lower circuit of figure 3 we choose the following noise. Assume that the input

state is |+〉, the +1 eigenstate of X , and that U is the non-Clifford phase gate. Apply O |+〉〈+|

p at

location 7; OU |+〉〈+|U †

p at location 1; N Z
p at locations 3 and 4; N X

p at location 6; and replace

the CNOT with OU |+〉〈+|U †

p on the top wire followed by a CNOT. This gives the following
transformation on the output Bloch vector (which has z = 0 as it is a phase state):

(1 − 2p)2((1 − p)(1 − 4p + 2p2)− p)

(
x

(1 − 2p)y

)
.

8 In fact, for the situations considered here, the use of opposite noise only seems to make the bounds slightly tighter
than using appropriately chosen Pauli errors, but we include it as it does appear to be slightly more detrimental, at
least when the other errors are chosen as they are.
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For an input state U (θ = π/4) the minimal p such that the output Bloch vector lies on the face
of the octahedron is

p = 3.00339%. (28)

Numerics suggest that U (θ = π/4) is not the most robust phase gate in this setting, and in fact

p = 3.01% (29)

is a noise level sufficient to take all possible phase states into the octahedron.

9. Bounds for teleportation injection with general, non-Clifford states and gates

It is not difficult to perform the analysis of the previous two sections using general single-qubit
non-Clifford gate and state resources, and then to numerically calculate the most robust of these
resources. For the Knill noise model we find that for general unitary gates

γ = 15.19% (30)

is sufficient to turn the teleportation state-injection into a Clifford circuit, whereas for general
states

γ = 21.78% (31)

is sufficient. The most robust non-Clifford state entering the circuit appears to be close to, but
not exactly the same as, the so-called |T 〉 state (where the |T 〉 state is defined [9] as the pure
state equivalent to the Bloch-sphere qubit density matrix 1/2(I + 1/

√
3(X + Y + Z))).

For an EPG model we use the same noise as for the phase gates/states in the previous
section, except that at location 4 instead of applying N Z

p we apply N Y
p . Numerical analysis of

the resulting equations reveals that

p = 5.03% (32)

is sufficient to turn the teleportation state-injection into a Clifford circuit, whereas for general
states

p = 6.31% (33)

is sufficient.

10. Potential effects of the decoding circuits

So far, we have considered solely the injection part of the circuit as depicted in figure 3,
and have not attempted to understand the effects of noise in the decoding circuit. Indeed,
within the framework of Knill’s noise model we have not even allowed noise at location 4.
The precise form of the noise generated by the decoding circuit is difficult to determine due
to the complex structure of the encoding and decoding networks, which may include many
steps of concatenation. This brings with it two problems. Firstly, the entangling gates in
the decoder typically generate correlations in noise, which mean that the problem becomes
a multiqubit problem, rather than a simple geometrical problem on one or two qubits.
Secondly, the postselection steps have an effect on the noise profile, and this is difficult to
calculate.
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Figure 5. This circuit shows the state-injection circuit of figure 3 (lines 1 and 2)
but now we explicitly include the action of part of a decoding circuit with the
Knill error model. The input of the circuit is the state (|ψ0〉|0〉 + |ψ1〉|1〉)/

√
2

where the state |ψi〉 will be decoded by an error-free circuit to |i〉 in the second
qubit. Errors from previous stages of encoding and manipulation are modelled
by depolarizing errors. The error-free state-injection would then lead to the
preparation of the state |ψ〉 in the output qubit at the bottom. Determining the
minimal error rate that ensures that the output is a stabilizer state provides an
upper bound on the fault tolerance threshold.

However, we believe that a careful analysis of the decoding circuits will lead to
improvements in the bounds that we have presented. In this section, we present some very
rough indications of the level of improvement that might be expected, although a more careful
analysis is much more difficult and is code dependent. The estimates that we obtain here are
not included in table 1 as they are not rigorously justified. We hope that by developing better
techniques, perhaps inspired by analysis of lower bounds, future work may be able to analyse
the decoding/encoding circuits more thoroughly than we do here.

To get a feeling for the effect of the errors that are introduced by the decoding circuit that
immediately precedes position 4, we have carried out an analysis of the circuit in figure 5, which
corresponds to one level of decoding prior to the injection circuit for a particular code. The input
of the top arm of the teleporter is a phase state proportional to |0〉 + exp(iπ/4)|1〉. This circuit is
a simplified version of figure 9 of [23]. The simplification consists of neglecting essentially all
errors that may occur in the preparation and encoding, as well as the decoding of the lower half
of that circuit of figure 9 of [23]. We also model the error on the incoming qubits in figure 5 via
depolarizing errors (it is in this assumption that most of the complexity is buried).

The computation of the error threshold in this approach is possible analytically because
of the small circuit size. With the help of a computational mathematical package we find the
threshold to be the sole real root (the Mathematica worksheet used to compute this may be
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obtained by contacting the authors) of the polynomial

p(ec)= −
1

2
−

f1(ec)

f2(ec)

with

f1(ec)= (16ec − 15)5(225 − 180ec + 32e2
c)

2(16875 − 40500ec + 46800e2
c − 23040e3

c + 4096e4
c)

f2(ec)= 1125
√

2(576650390625 − 3536789062500ec + 11768793750000e2
c

−24002325000000e3
c + 32367600000000e4

c − 29499033600000e5
c

+18141511680000e6
c − 7375159296000e7

c + 1887436800000e8
c

−273804165120e9
c + 17179869184e10

c )

and we find

ethreshold
c = 9.29%. (34)

One can try to understand how critical is the choice of depolarizing errors entering the decoding
steps. To estimate this we also analysed what happens if the depolarizing errors in the central
four wires of figure 5 are removed. In this case the bound becomes

ethreshold
c = 10.06%. (35)

Both these bounds are quite close to the bound that would be obtained by instead modelling the
noise from the decoding circuit as a depolarizing error (of strength γ using Knill’s noise model)
at location 4 (for which the bound would be 9.59%). All these numbers should be compared to
13.69%, which is the number obtained for precisely the same phase state input with no noise
whatsoever outside locations 1–3 and 5–7 of figure 3.

A more rigorous analysis of the decoding circuits requires much more effort and may
be a subject for future work. However, these rough calculations give some indication of the
improvements that might be expected in the upper bounds that we have obtained so far.

11. Discussion, caveats and conclusion

We have discussed ‘attacks’ on fault-tolerant quantum circuits involving Clifford operations
and extra resources, with the intention of adding the smallest amount of noise possible to
make the circuits efficiently simulatable classically. The approach is simple—to shift noise
from neighbouring Clifford gates on to the non-Clifford resources. The approach works best for
situations where this ‘shifting’ process can be done easily, as happens for teleportation-based
state injection schemes. There are many other fault-tolerance proposals in the literature (e.g.
methods built around cluster states [24]) that involve a few non-Clifford resources surrounded
by many Clifford operations—and so in such cases our approach could also provide improved
upper bounds, depending upon the precise manner in which the ‘non-Cliffordness’ is ‘injected’
into the rest of the circuit.

We are certain that the upper bounds obtained in this work can be optimized further,
particularly through consideration of the decoding circuits. The rigorous part of the analysis
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performed in this work does not consider the decoding circuit present in state-injection
schemes, except for a noise step at location 4 in the error-per-gate noise model. The analysis
of the teleportation part of the state-injection is straightforward because the teleportation
circuit simplifies correlated Pauli errors, reducing the problem to a single-qubit one. A more
sophisticated attack that also applies noise to the decoding steps should lead to tighter bounds,
especially for Knill’s noise model.

It is also important to note that teleportation is not the only method of state injection. If the
non-Clifford resource is either a measurement or a unitary, a non-Clifford measurement may
be implemented directly on the decoded wire9. This method involves far fewer error locations
outside the decoder, and hence is less susceptible to our method of attack. Hence the bounds
derived in the lower part of table 1 are not generally applicable to all stabilizer schemes, but are
intended more as an approach that can be fairly effective for specific fault tolerance proposals.

A summary of the upper bounds that we have obtained is given in table 1. Although the
bounds that we have derived are lower than previous rigorously established upper bounds, our
bounds are not typically as general, as most previous results make fewer assumptions about
the architecture (and often involve incomparable noise models). For comparable fault-tolerance
schemes, the estimates conjectured in [7] are lower than the values that we have obtained, and
future work will be needed to see whether further optimization of our approach will go as low.
However, the approach presented here is relatively simple, makes no assumptions (other than
assuming that quantum computation is not classically tractable), and has a slightly different aim
as it deals with ‘classical’ bounds rather than ‘quantum’.
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