Picture of a black hole

Strathclyde Open Access research that creates ripples...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of research papers by University of Strathclyde researchers, including by Strathclyde physicists involved in observing gravitational waves and black hole mergers as part of the Laser Interferometer Gravitational-Wave Observatory (LIGO) - but also other internationally significant research from the Department of Physics. Discover why Strathclyde's physics research is making ripples...

Strathprints also exposes world leading research from the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

Let's see how things unfold.: reconciling the infinite with the intensional (extended abstract)

McBride, C. (2009) Let's see how things unfold.: reconciling the infinite with the intensional (extended abstract). In: Algebra and Coalgebra in Computer Science. Lecture Notes in Computer Science (5728). Springer, pp. 113-126. ISBN 978-3-642-03740-5

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Coinductive types model infinite structures unfolded on demand, like politicians' excuses: for each attack, there is a defence but no likelihood of resolution. Representing such evolving processes coinductively is often more attractive than representing them as functions from a set of permitted observations, such as projections or finite approximants, as it can be tricky to ensure that observations are meaningful and consistent. As programmers and reasoners, we need coinductive definitions in our toolbox, equipped with appropriate computational and logical machinery.