Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Unravelling small world networks

Higham, D.J. (2003) Unravelling small world networks. Journal of Computational and Applied Mathematics, 158 (1). pp. 61-74. ISSN 0377-0427

[img]
Preview
Text (strathprints000168)
strathprints000168.pdf - Accepted Author Manuscript

Download (3MB) | Preview

Abstract

New classes of random graphs have recently been shown to exhibit the small world phenomenon - they are clustered like regular lattices and yet have small average pathlengths like traditional random graphs. Small world behaviour has been observed in a number of real life networks, and hence these random graphs represent a useful modelling tool. In particular, Grindrod [Phys. Rev. E 66 (2002) 066702-1] has proposed a class of range dependent random graphs for modelling proteome networks in bioinformatics. A property of these graphs is that, when suitably ordered, most edges in the graph are short-range, in the sense that they connect near-neighbours, and relatively few are long-range. Grindrod also looked at an inverse problem - given a graph that is known to be an instance of a range dependent random graph, but with vertices in arbitrary order, can we reorder the vertices so that the short-range/long-range connectivity structure is apparent? When the graph is viewed in terms of its adjacency matrix, this becomes a problem in sparse matrix theory: find a symmetric row/column reordering that places most nonzeros close to the diagonal. Algorithms of this general nature have been proposed for other purposes, most notably for reordering to reduce fill-in and for clustering large data sets. Here, we investigate their use in the small world reordering problem. Our numerical results suggest that a spectral reordering algorithm is extremely promising, and we give some theoretical justification for this observation via the maximum likelihood principle.