Picture of athlete cycling

Open Access research with a real impact on health...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the Physical Activity for Health Group based within the School of Psychological Sciences & Health. Research here seeks to better understand how and why physical activity improves health, gain a better understanding of the amount, intensity, and type of physical activity needed for health benefits, and evaluate the effect of interventions to promote physical activity.

Explore open research content by Physical Activity for Health...

Evolution of Atg1 function and regulation

Chan, Edmond Y. and Tooze, Sharon A. (2009) Evolution of Atg1 function and regulation. Autophagy, 5 (6). pp. 758-765.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The serine/threonine kinase Atg1 plays an essential role downstream of TOR for the regulation of autophagy. In yeast, where Atg1 was first identified, a complex regulatory mechanism has been described that includes at least seven other interacting proteins and a phosphorylation-dependent switch. Recent findings confirm that the mammalian Atg1 homologues ULK1 and 2 have autophagy regulatory roles. However, we and others have also demonstrated mechanistic differences with the yeast model and between these two Atg1 family members. Here, we elaborate on our growing understanding of Atg1 function, incorporating findings from yeast, C. elegans, D. melanogaster and mammalian cells. We propose that through evolution, Atg1 proteins have adopted additional cellular functions and regulatory mechanisms, which could involve multiple gene family isoforms working within multifunctional protein complexes. The gene family expansion observed in higher eukaryotes might reflect an increased functional diversity of Atg1 proteins in cell growth, differentiation and survival.