Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Detection of super-high-frequency partial discharge by using neural networks

Shan, Q. and Bhatti, S. and Glover, I.A. and Atkinson, R. and Rutherford, R. and , EPSRC (Funder) (2009) Detection of super-high-frequency partial discharge by using neural networks. Insight: The Journal of the British Institute of Non-Destructive Testing, 51 (8). pp. 442-447. ISSN 1354-2575

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A system has been developed for the detection of super-high-frequency (SHF) partial discharge (PD) at frequencies up to 6 GHz. The system consists of three antennas for capturing PDs and a fast digital oscilloscope for sampling data. One of the antennas is a disk-cone antenna with frequency range below 710 MHz. The other two half TEM horn antennas have been designed and constructed for the frequency range 716 MHz - 5 GHz. To extend the frequency range up to 6 GHz, a methodology has been developed by compensating amplitude-response to frequency-magnitude. The compensation is realised by using multilayer feed-forward neural networks to equalise on amplitude-response. A direct sampling method is used to log the captured PD data. This PD detection system has been implemented to measure PDs at a 400 kV electrical substation (Strathaven, Scottish Power Ltd).