Picture of scraped petri dish

Scrape below the surface of Strathprints...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Explore world class Open Access research by researchers at Strathclyde, a leading technological university.

Explore

Detection of super-high-frequency partial discharge by using neural networks

Shan, Q. and Bhatti, S. and Glover, I.A. and Atkinson, R. and Rutherford, R. and , EPSRC (Funder) (2009) Detection of super-high-frequency partial discharge by using neural networks. Insight: The Journal of the British Institute of Non-Destructive Testing, 51 (8). pp. 442-447. ISSN 1354-2575

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

A system has been developed for the detection of super-high-frequency (SHF) partial discharge (PD) at frequencies up to 6 GHz. The system consists of three antennas for capturing PDs and a fast digital oscilloscope for sampling data. One of the antennas is a disk-cone antenna with frequency range below 710 MHz. The other two half TEM horn antennas have been designed and constructed for the frequency range 716 MHz - 5 GHz. To extend the frequency range up to 6 GHz, a methodology has been developed by compensating amplitude-response to frequency-magnitude. The compensation is realised by using multilayer feed-forward neural networks to equalise on amplitude-response. A direct sampling method is used to log the captured PD data. This PD detection system has been implemented to measure PDs at a 400 kV electrical substation (Strathaven, Scottish Power Ltd).